Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
A = 2x2 - 10x + 11
= 2( x2 - 2.x.\(\frac{5}{2}\) + \(\frac{25}{4}\) ) - \(\frac{3}{2}\)
= 2(x - \(\frac{5}{2}\))2 - \(\frac{3}{2}\)
Ta có :
(x - \(\frac{5}{2}\))2 \(\ge0\)
<=> 2(x - \(\frac{5}{2}\))2 \(\ge0\)
<=> 2(x - \(\frac{5}{2}\))2 - \(\frac{3}{2}\) \(\ge-\frac{3}{2}\)
Vậy Amin = - \(\frac{3}{2}\) [ Khi (x - \(\frac{5}{2}=0=>x=\frac{5}{2}\))
a, \(A=x^2-6x+11\)
\(=x^2-2.3.x+9+2\)
\(=\left(x-3\right)^2+2\)
Ta có: \(\left(x-3\right)^2\ge0\Leftrightarrow\left(x-3\right)^2+2\ge2\)
Dấu "=" xảy ra \(\Leftrightarrow x-3=0\)\(\Leftrightarrow x=3\)
Vậy \(MinA=3\Leftrightarrow x=3\)
b, \(B=2x^2+10x-1\)
\(=2\left(x^2+5x\right)-1\)
\(=2\left(x^2+2.\frac{5}{2}x+\frac{25}{4}\right)-\frac{21}{4}\)
\(=2\left(x+\frac{5}{2}\right)^2-\frac{21}{4}\)
Ta có: \(\left(x+\frac{5}{2}\right)^2\ge0\Leftrightarrow\left(x+\frac{5}{2}\right)^2-\frac{21}{4}\ge-\frac{21}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x+\frac{5}{2}\right)^2=0\Leftrightarrow x+\frac{5}{2}=0\Leftrightarrow x=-\frac{5}{2}\)
Vậy \(MinB=-\frac{21}{4}\Leftrightarrow x=-\frac{5}{2}\)
c, \(C=5x-x^2\)
\(=-x^2+5x\)
\(=-\left(x^2+2.\frac{5}{2}x+\frac{25}{4}\right)+\frac{25}{4}\)
\(=-\left(x+\frac{5}{2}\right)^2+\frac{25}{4}\)
Ta có: \(-\left(x+\frac{5}{2}\right)^2\le0\Leftrightarrow-\left(x+\frac{5}{2}\right)^2+\frac{25}{4}\le\frac{25}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x+\frac{5}{2}\right)^2=0\Leftrightarrow x=-\frac{5}{2}\)
Vậy \(MaxB=\frac{25}{4}\Leftrightarrow x=-\frac{5}{2}\)
Tìm GTLN nhé !
Ta có : A = 11 - 10x - x2
= -(x2 + 10x - 11)
= -(x2 + 10x + 25 - 14)
A = -(x + 5)2 + 14
Vì \(-\left(x+5\right)^2\le0\forall x\in R\)
Nên : A = -(x + 5)2 + 14 \(\le14\forall x\in R\)
Vậy Amin = 14 khi x = -5 .
GTNN nak !!!
\(B=x^2-4xy+5y^2+10x-22y+28\)
\(=\left(x^2-4xy+4y^2\right)+\left(10x-20y\right)+\left(y^2-2y+1\right)+27\)
\(=\left[\left(x-2y\right)^2+10\left(x-2y\right)+25\right]+\left(y^2-2y+1\right)+2\)
\(=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\) có GTNN là 2
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x-2y+5=0\\y-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}}\)
Vậy \(B_{min}=2\) tại \(x=-3;y=1\)
đặt A=3x2+y2-2xy-7=(x2-2xy+y2)+2x2-7=(x-y)2+2x2-7.ta có (x-y)2 luôn lớn hơn hoặc bằng 0 (bằng 0 khi x bằng y) và 2x2 cũng lớn hơn hoặc bằng 0(bằng 0 khi x=0) nên (x-y)2+2x2 luôn lớn hơn hoặc bằng 0 (bằng 0 khi x=y=0) suy ra (x-y)2+2x2-7 luôn lớn hơn hoặc bằng -7(đẳng thức xảy ra khi x=y=0) nên GTNN của A là -7.
Vậy GTNN của A là -7.
a) A = x4 + x2 + 2
Do : x4 ≥ 0 ∀x
x2 ≥ 0 ∀x
⇒ x4 + x2 + 2 ≥ 2
⇒ AMin = 2 ⇔ x = 0
b) B = 3x2 - 21x + 15
B = 3( x2 - \(2\dfrac{7}{2}x+\dfrac{49}{4}\) ) + 15 - \(\dfrac{147}{4}\)
B = 3( x - \(\dfrac{7}{2}\))2 - \(\dfrac{87}{4}\)
Do : 3( x - \(\dfrac{7}{2}\))2 ≥ 0 ∀x
⇒ 3( x - \(\dfrac{7}{2}\))2 - \(\dfrac{87}{4}\) ≥ - \(\dfrac{87}{4}\)
⇒ BMin = - \(\dfrac{87}{4}\) ⇔ x = \(\dfrac{7}{2}\)
c) C = x2 - 4xy + 5y2 + 10x - 22y + 28
C = x2 - 4xy + 4y2 + 10x - 20y + 25 + y2 - 2y + 1 + 2
C = ( x - 2y)2 + 10( x - 2y) + 25 + ( y - 1)2 + 2
C = ( x - 2y + 5)2 + ( y - 1)2 + 2
Do : ( x - 2y + 5)2 ≥ 0 ∀xy
( y - 1)2 ≥ 0 ∀y
⇒ ( x - 2y + 5)2 + ( y - 1)2 + 2 ≥ 2
⇒ CMin = 2 ⇔ x = - 3 ; y = 1
Phải là tìm GTLN chứ ?
Ta có :
\(A=\frac{7}{x^2-x+2}=\frac{7}{\left(x^2-x+\frac{1}{4}\right)+1,75}\)
\(=\frac{7}{\left(x-\frac{1}{2}\right)^2+1,75}\le\frac{7}{1,75}=4\)
\(\Leftrightarrow Max_A=4\Rightarrow x=\frac{1}{2}\)
Vậy ...
\(A=\frac{x^2-3}{\left(x-2\right)^2}=\frac{-3x^2+12x-12+4x^2-12x+9}{\left(x-2\right)^2}\)
\(=-3+\frac{4x^2-12x+9}{\left(x-2\right)^2}=-3+\frac{\left(2x-3\right)^2}{\left(x-2\right)^2}\ge-3\)
Vậy GTNN là - 3 đạt được khi x = 1,5
A= 7/ - (x2 - 10x +25) +28
A=7/ - (x - 5)2 +28
xét - (x - 5)2 +28 <= 28 dấu = xảy ra khi x - 5 = 0 <=> x=5 . suy ra MIN A = 7/28 = 1/4
Vậy gtnn của A = 1/4 khi x=5