Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn nên gõ đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề và hỗ trợ tốt hơn nhé.
bài này dễ ẹt ak
nhưng giúp mình bài này đi
chotam giac abc . co canh bc=12cm, duong cao ah=8cm
a> tinh s tam giac abc
b> tren canh bc lay diem e sao cho be=3/4bc. tinh s tam giac abe va s tam giac ace ( bằng nhiều cách )
c> lay diem chinh giua cua canh ac va m . tinh s tam giac ame
\(\Leftrightarrow\sqrt{x+3}-2-2\sqrt{x}+2=\sqrt{2x+2}-2+2-\sqrt{3x+1}\)
=>\(\dfrac{x+3-4}{\sqrt{x+3}+2}-2\left(\sqrt{x}-1\right)=\dfrac{2x+2-4}{\sqrt{2x+2}+2}+\dfrac{4-3x-1}{2+\sqrt{3x+1}}\)
=>\(\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x+3}+2}-2\left(\sqrt{x}-1\right)=\dfrac{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{2x+2}+2}-\dfrac{3\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{2+\sqrt{3x+1}}\)
=>\(\left(\sqrt{x}-1\right)\left(\dfrac{\sqrt{x}+1}{\sqrt{x+3}+2}-2-\dfrac{2\sqrt{x}+2}{\sqrt{2x+2}+2}+\dfrac{3\sqrt{x}+3}{2+\sqrt{3x+1}}\right)=0\)
=>căn x-1=0
=>x=1
Bạn cần viết lại đề bằng công thức toán (gõ công thức trong hộp có biểu tượng $\sum$) để được hỗ trợ tốt hơn. Nhìn đề thế này rối mắt quá.
Đặt \(A=\frac{1}{\sqrt{2x-3}}+\frac{4}{\sqrt{y-2}}+\frac{16}{\sqrt{3z-1}}+\sqrt{2x-3}+\sqrt{y-2}+\sqrt{3z-1}\)
Điều kiện xác định : \(\begin{cases}x\ge\frac{3}{2}\\y\ge2\\z\ge\frac{1}{3}\end{cases}\)
Ta có : \(A=\left(\frac{1}{\sqrt{2x-3}}+\sqrt{2x-3}-2\right)+\left(\frac{4}{\sqrt{y-2}}+\sqrt{y-2}-4\right)+\left(\frac{16}{\sqrt{3z-1}}+\sqrt{3z-1}-8\right)+14\)
\(=\frac{\left(2x-3\right)-2\sqrt{2x-3}+1}{\sqrt{2x-3}}+\frac{\left(y-2\right)-4\sqrt{y-2}+4}{\sqrt{y-2}}+\frac{\left(3z-1\right)-8\sqrt{3z-1}+16}{\sqrt{3z-1}}+14\)
\(=\frac{\left(\sqrt{2x-3}-1\right)^2}{\sqrt{2x-3}}+\frac{\left(\sqrt{y-2}-2\right)^2}{\sqrt{y-2}}+\frac{\left(\sqrt{3z-1}-4\right)^2}{\sqrt{3z-1}}+14\ge14\)
Dấu "=" xảy ra khi \(\begin{cases}\left(\sqrt{2x-3}-1\right)^2=0\\\left(\sqrt{y-2}-2\right)^2=0\\\left(\sqrt{3z-1}-4\right)^2=0\end{cases}\) \(\Leftrightarrow\begin{cases}x=2\\y=6\\z=\frac{17}{3}\end{cases}\) (TMĐK)
Vậy Min A = 14 <=> (x;y;z) = (2;6;\(\frac{17}{3}\))
mình vô cùng cảm ơn bạn