
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a: \(A=x^2-4x+4-3=\left(x-2\right)^2-3>=-3\)
Dấu = xảy ra khi x=2
b: \(x^2+4x-10=x^2+4x+4-14=\left(x+2\right)^2-14>=-14\)
\(\Leftrightarrow\dfrac{4}{x^2+4x-10}< =-\dfrac{4}{14}\)
=>B>=2/7
Dấu = xảy ra khi x=-2
c: \(x^2-x+1=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>=\dfrac{3}{4}\)
=>2/x^2-x+1<=2:3/4=8/3
=>C>=-8/3
Dấu = xảy ra khi x=1/2
d: x^2-6x+12=(x-3)^2+3>=3
=>6/x^2-6x+12<=2
=>D>=-2
Dấu = xảy ra khi x=3

Lời giải:
Ta có: \(A=\frac{x}{3}+\frac{3}{x-2}=\frac{x-2}{3}+\frac{3}{x-2}+\frac{2}{3}\)
Vì \(x>2\Rightarrow x-2>0\Rightarrow \frac{3}{x-2}; \frac{x-2}{3}>0\)
Áp dụng BĐT Cauchy cho các số dương ta có:
\(\frac{x-2}{3}+\frac{3}{x-2}\geq 2\sqrt{\frac{x-2}{3}.\frac{3}{x-2}}=2\)
\(\Rightarrow A=\frac{x-2}{3}+\frac{3}{x-2}+\frac{2}{3}\geq 2+\frac{2}{3}=\frac{8}{3}\)
Vậy GLNN của $A$ là $\frac{8}{3}$
Dấu bằng xảy ra khi \(\frac{x-2}{3}=\frac{3}{x-2}\Leftrightarrow x=5\)

d/tìm Min:
D=\(\dfrac{4x+3}{x^2+1}\)=\(\dfrac{x^2+4x+4-\left(x^2+1\right)}{x^2+1}\)=\(\dfrac{\left(x+2\right)^2}{x^2+1}\)-\(\dfrac{x^2+1}{x^2+1}\)=\(\dfrac{\left(x+2\right)^2}{x^2+1}\)-1>=-1
=>Min D=-1.Dấu = xảy ra khi x=-2
TÌM Max:
D=\(\dfrac{4x+3}{x^2+1}\)=\(\dfrac{4\left(x^2+1\right)-\left(4x^2-4x+1\right)}{x^2+1}\)=4-\(\dfrac{\left(2x-1\right)^2}{x^2+1}\)=<4
=>Max D=4.Dấu = xảy ra khi x=\(\dfrac{1}{2}\)
các câu kia tương tự nha bạn.chúc bạn học tốt
Rảnh rỗi sinh nông nỗi , tui lm câu a nha!
a) A = \(\dfrac{2x-1}{x^2+2}\) = \(\dfrac{\left(x^2+2x+1\right)-\left(x^2+2\right)}{x^2+2}\)
= \(\dfrac{\left(x+1\right)^2}{x^2+2}-\dfrac{x^2+2}{x^2+2}\) = \(\dfrac{\left(x+1\right)^2}{x^2+2}\) \(-1\)
Vì \(x^2+2>0\) với mọi x => \(\dfrac{\left(x+1\right)^2}{x^2+2}\) >= 0 với mọi x
=> Dấu = xảy ra <=> x + 1 = 0 => x = -1
=> GTNN của A = -1 khi x = -1

\(A=x^2-2x+4\)
\(A=\left(x^2-2x+1\right)+3\)
\(A=\left(x-1\right)^2+3\)
Vì \(\left(x-1\right)^2\ge0\) với mọi x
\(\Rightarrow\left(x-1\right)^2+3\ge3\) với mọi x
\(\Rightarrow Amin=3\Leftrightarrow x=1\)

a: \(P=\left(\dfrac{-\left(x+2\right)}{x-2}-\dfrac{4x^2}{\left(x-2\right)\left(x+2\right)}+\dfrac{x-2}{x+2}\right)\cdot\dfrac{x^2\left(2-x\right)}{x\left(x-3\right)}\)
\(=\dfrac{-x^2-4x-4-4x^2+x^2-4x+4}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{-x\left(x-2\right)}{x-3}\)
\(=\dfrac{-4x^2-8x}{\left(x+2\right)}\cdot\dfrac{-x}{x-3}=\dfrac{4x^2}{x-3}\)
c: \(P=\dfrac{4x^2-12x+12x-36+36}{x-3}\)
\(=4x+12+\dfrac{36}{x-3}=4x-12+\dfrac{36}{x-3}+24\)
\(\Leftrightarrow P>=2\sqrt{4\left(x-3\right)\cdot\dfrac{36}{x-3}}+24=2\cdot\sqrt{144}+24=2\cdot12+24=48\)
Dấu = xảy ra khi 4(x-3)^2=36
=>(x-3)^2=9
=>x=6
ko chắc đâu
thím ơi: x >0
=> x-3 > -3