\(\dfrac{4x^2}{x-3}\) với x>3

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2022

a: \(A=x^2-4x+4-3=\left(x-2\right)^2-3>=-3\)

Dấu = xảy ra khi x=2

b: \(x^2+4x-10=x^2+4x+4-14=\left(x+2\right)^2-14>=-14\)

\(\Leftrightarrow\dfrac{4}{x^2+4x-10}< =-\dfrac{4}{14}\)

=>B>=2/7

Dấu = xảy ra khi x=-2

c: \(x^2-x+1=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>=\dfrac{3}{4}\)

=>2/x^2-x+1<=2:3/4=8/3

=>C>=-8/3

Dấu = xảy ra khi x=1/2

d: x^2-6x+12=(x-3)^2+3>=3

=>6/x^2-6x+12<=2

=>D>=-2

Dấu = xảy ra khi x=3

AH
Akai Haruma
Giáo viên
11 tháng 4 2018

Lời giải:

Ta có: \(A=\frac{x}{3}+\frac{3}{x-2}=\frac{x-2}{3}+\frac{3}{x-2}+\frac{2}{3}\)

Vì \(x>2\Rightarrow x-2>0\Rightarrow \frac{3}{x-2}; \frac{x-2}{3}>0\)

Áp dụng BĐT Cauchy cho các số dương ta có:

\(\frac{x-2}{3}+\frac{3}{x-2}\geq 2\sqrt{\frac{x-2}{3}.\frac{3}{x-2}}=2\)

\(\Rightarrow A=\frac{x-2}{3}+\frac{3}{x-2}+\frac{2}{3}\geq 2+\frac{2}{3}=\frac{8}{3}\)

Vậy GLNN của $A$ là $\frac{8}{3}$

Dấu bằng xảy ra khi \(\frac{x-2}{3}=\frac{3}{x-2}\Leftrightarrow x=5\)

2 tháng 6 2017

d/tìm Min:

D=\(\dfrac{4x+3}{x^2+1}\)=\(\dfrac{x^2+4x+4-\left(x^2+1\right)}{x^2+1}\)=\(\dfrac{\left(x+2\right)^2}{x^2+1}\)-\(\dfrac{x^2+1}{x^2+1}\)=\(\dfrac{\left(x+2\right)^2}{x^2+1}\)-1>=-1

=>Min D=-1.Dấu = xảy ra khi x=-2

TÌM Max:

D=\(\dfrac{4x+3}{x^2+1}\)=\(\dfrac{4\left(x^2+1\right)-\left(4x^2-4x+1\right)}{x^2+1}\)=4-\(\dfrac{\left(2x-1\right)^2}{x^2+1}\)=<4

=>Max D=4.Dấu = xảy ra khi x=\(\dfrac{1}{2}\)

các câu kia tương tự nha bạn.chúc bạn học tốthihi

2 tháng 6 2017

Rảnh rỗi sinh nông nỗi , tui lm câu a nha!

a) A = \(\dfrac{2x-1}{x^2+2}\) = \(\dfrac{\left(x^2+2x+1\right)-\left(x^2+2\right)}{x^2+2}\)

= \(\dfrac{\left(x+1\right)^2}{x^2+2}-\dfrac{x^2+2}{x^2+2}\) = \(\dfrac{\left(x+1\right)^2}{x^2+2}\) \(-1\)

\(x^2+2>0\) với mọi x => \(\dfrac{\left(x+1\right)^2}{x^2+2}\) >= 0 với mọi x

=> Dấu = xảy ra <=> x + 1 = 0 => x = -1

=> GTNN của A = -1 khi x = -1

19 tháng 12 2018

\(A=x^2-2x+4\)

\(A=\left(x^2-2x+1\right)+3\)

\(A=\left(x-1\right)^2+3\)

\(\left(x-1\right)^2\ge0\) với mọi x

\(\Rightarrow\left(x-1\right)^2+3\ge3\) với mọi x

\(\Rightarrow Amin=3\Leftrightarrow x=1\)

19 tháng 12 2018

\(B=4x^2-4x+1\)

\(B=\left(2x-1\right)^2\)

\(\left(2x-1\right)^2\ge0\) với mọi x

\(\Rightarrow Bmin=0\Leftrightarrow x=\dfrac{1}{2}\)

10 tháng 12 2022

a: \(P=\left(\dfrac{-\left(x+2\right)}{x-2}-\dfrac{4x^2}{\left(x-2\right)\left(x+2\right)}+\dfrac{x-2}{x+2}\right)\cdot\dfrac{x^2\left(2-x\right)}{x\left(x-3\right)}\)

\(=\dfrac{-x^2-4x-4-4x^2+x^2-4x+4}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{-x\left(x-2\right)}{x-3}\)

\(=\dfrac{-4x^2-8x}{\left(x+2\right)}\cdot\dfrac{-x}{x-3}=\dfrac{4x^2}{x-3}\)

c: \(P=\dfrac{4x^2-12x+12x-36+36}{x-3}\)

\(=4x+12+\dfrac{36}{x-3}=4x-12+\dfrac{36}{x-3}+24\)

\(\Leftrightarrow P>=2\sqrt{4\left(x-3\right)\cdot\dfrac{36}{x-3}}+24=2\cdot\sqrt{144}+24=2\cdot12+24=48\)

Dấu = xảy ra khi 4(x-3)^2=36

=>(x-3)^2=9

=>x=6