Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK: \(x>0;x\ne1\)
\(A=\left(\frac{1}{x-\sqrt{x}}+\frac{1}{\sqrt{x}-1}\right):\frac{\sqrt{x}+1}{x-2\sqrt{x}+1}\)
\(=\left(\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}+\frac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\frac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)^2}\)
\(=\frac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}\)
\(=\frac{\sqrt{x}-1}{\sqrt{x}}\)
\(A>-1\) \(\Rightarrow\)\(\frac{\sqrt{x}-1}{\sqrt{x}}>-1\)
\(\Leftrightarrow\)\(\frac{\sqrt{x}-1}{\sqrt{x}}+1>0\) \(\Leftrightarrow\)\(\frac{2\sqrt{x}-1}{\sqrt{x}}>0\)
Do \(\sqrt{x}>0\) \(\Rightarrow\)\(2\sqrt{x}-1>0\)\(\Leftrightarrow\)\(2\sqrt{x}>1\)\(\Leftrightarrow\)\(\sqrt{x}>\frac{1}{2}\)\(\Leftrightarrow\)\(x>\frac{1}{4}\)
Vậy \(x>\frac{1}{4}\)\(\left(x\ne1\right)\)thì A > - 1
\(ĐKXĐ:\hept{\begin{cases}x\ne0\\x\ne1\end{cases}}\)
Ta có: \(A=\left(\frac{1}{x-\sqrt{x}}+\frac{1}{\sqrt{x}-1}\right):\frac{\sqrt{x}+1}{x-2\sqrt{x}+1}\)\(=\left[\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}+\frac{1}{\sqrt{x}-1}\right]:\frac{\sqrt{x}+1}{\left(\sqrt{x}\right)^2-2\sqrt{x}+1}\)
\(=\left[\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}+\frac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\right]:\frac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)^2}\)
\(=\frac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}=\frac{\sqrt{x}-1}{\sqrt{x}}\)
Để \(A>-1\)thì \(\frac{\sqrt{x}-1}{\sqrt{x}}>-1\)\(\Leftrightarrow\sqrt{x}-1>-\sqrt{x}\)\(\Leftrightarrow2\sqrt{x}>1\)
\(\Leftrightarrow\sqrt{x}>\frac{1}{2}\)\(\Leftrightarrow x>\frac{1}{4}\)thoả mãn \(x\ne1\)
Vậy \(A>-1\)\(\Leftrightarrow x>\frac{1}{4}\)thoả mãn \(x\ne1\)
bài 3:
a, đặt x12=y9=z5=kx12=y9=z5=k
=>x=12k,y=9k,z=5k
ta có: ayz=20=> 12k.9k.5k=20
=> (12.9.5)k^3=20
=>540.k^3=20
=>k^3=20/540=1/27
=>k=1/3
=>x=12.1/3=4
y=9.1/3=3
z=5.1/3=5/3
vậy x=4,y=3,z=5/3
b,ta có: x5=y7=z3=x225=y249=z29x5=y7=z3=x225=y249=z29
A/D tính chất dãy tỉ số bằng nhau ta có:
x5=y7=z3=x225=y249=z29=x2+y2−z225+49−9=58565=9x5=y7=z3=x225=y249=z29=x2+y2−z225+49−9=58565=9
=>x=5.9=45
y=7.9=63
z=3*9=27
vậy x=45,y=63,z=27
Bài 1:
a: \(P=\dfrac{x+\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}+1}{1}=\dfrac{x+\sqrt{x}+1}{\sqrt{x}}\)
b: \(x=2+2\sqrt{5}+2-2\sqrt{5}=4\)
Khi x=4 thì \(P=\dfrac{4+2+1}{2}=\dfrac{7}{2}\)
ĐKXĐ: x\(\ge\)0,x\(\ne\)1
a) p=\(\dfrac{1}{3\sqrt{x}}\)=>\(\dfrac{\sqrt{x}-1}{\sqrt{x}+1}=\dfrac{1}{3\sqrt{x}}\)
<=>\(\sqrt{x}+1=3\sqrt{x}\left(\sqrt{x}-1\right)\)
<=>\(\sqrt{x}+1=3x-3\sqrt{x}\)
<=>\(3x-3\sqrt{x}-\sqrt{x}-1=0\)
<=> \(3x-4\sqrt{x}-1=0\)
<=>x1=\(\dfrac{2+\sqrt{7}}{3}\); x2=\(\dfrac{2-\sqrt{7}}{3}\)(loại x2 do x\(\ge\)0)
c) Xét x\(\ge\)0
<=>\(\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\ge\dfrac{\sqrt{0}-1}{\sqrt{0}+1}\)
<=>\(P\ge-1\)
Vậy giá trị nhỏ nhất của P=-1