Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
$x(x+2)(x+4)(x+6)+8$
$=x(x+6)(x+2)(x+4)+8=(x^2+6x)(x^2+6x+8)+8$
$=a(a+8)+8$ (đặt $x^2+6x=a$)
$=a^2+8a+8=(a+4)^2-8=(x^2+6x+4)^2-8\geq -8$
Vậy $A_{\min}=-8$ khi $x^2+6x+4=0\Leftrightarrow x=-3\pm \sqrt{5}$
2.
$B=5+(1-x)(x+2)(x+3)(x+6)=5-(x-1)(x+6)(x+2)(x+3)$
$=5-(x^2+5x-6)(x^2+5x+6)$
$=5-[(x^2+5x)^2-6^2]$
$=41-(x^2+5x)^2\leq 41$
Vậy $B_{\max}=41$. Giá trị này đạt tại $x^2+5x=0\Leftrightarrow x=0$ hoặc $x=-5$
x^2+x+1/4+3/4
=(x+1/2)^2+3/4
=> A min=3/4
Câu kia tương tự .......
\(A=x^2+x+1=x^2+2x.\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)
Vì \(\left(x+\frac{1}{2}\right)^2\ge0,x\in R\)
nên \(\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4},x\in R\)
Vậy \(Min_A=\frac{3}{4}\)khi \(x+\frac{1}{2}=0\Rightarrow x=-\frac{1}{2}\)
\(B=\left(x+2\right)^2+\left(x-3\right)^2=x^2+2x+1+x^2-6x+9=2x^2-4x+10=2\left(x^2-2x+5\right)\)
\(B=2\left(x^2-2x+1+4\right)=2\left(x-1\right)^2+4\)
Vì \(2\left(x-1\right)^2\ge0,x\in R\)
nên \(2\left(x-1\right)^2+4\ge4,x\in R\)
Vậy \(Min_B=4\)khi \(x-1=0\Rightarrow x=1\)
ĐK tồn tại A với mọi x
\(A=\frac{x^2-x+1}{x^2+x+1}=\frac{x^2+x+1-2x}{x^2+x+1}=1+\frac{-2x}{x^2+x+1}=1+B\) (*)
Thay vì tìm GTNN & LN của B ta đi tìm GTNN,LN của B
\(B=\frac{-2x}{x^2+x+1}\)
Tìm Max\(2-B=2-\frac{-2x}{x^2+x+1}=\frac{2x^2+2x+2+2x}{x^2+x+1}=\frac{2\left(x^2+2x+1\right)}{x^2+x+1}=\frac{2\left(x+1\right)^2}{\left(x+\frac{1}{2}\right)^2+\frac{3}{4}}\ge0\)
=>\(2-B\ge0\Rightarrow B\le2\Rightarrow A\le2+1=3\)đẳng thức khi Tim Min
\(B+\frac{2}{3}=\frac{-2x}{x^2+x+1}+\frac{2}{3}\Leftrightarrow\frac{-6x+2x^2+2x+2}{3\left(x^2+x+1\right)}=\frac{2\left(x^2-2x+1\right)}{3\left(x^2+x+1\right)}=\frac{2\left(x-1\right)^2}{3\left[\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\right]}\ge0\)
\(B+\frac{2}{3}\ge0\Rightarrow B\ge-\frac{2}{3}\Rightarrow A\ge1-\frac{2}{3}=\frac{1}{3}\) đẳng thức khi x=-1
Kết luận:
GTNN A=1/3 khi x=1
GTLN A=3 khi x=-1
Dùng PP Miền giá trị đi bạn:
Gọi k là 1 giá trị ta có: (x² - x +1)/(x² + x +1) = k (1). Ta cần tìm k để PT (1) có nghiệm
Từ (1) ta có: (x² - x +1) = k.(x² + x +1)
<=> (1 - k)x² - (k + 1)x + (1 - k) = 0 (*)
Del ta =(k + 1)² - 4( 1 - k)² = -3k² + 10k - 3
Để (*) có nghiệm thì del ta ≥ 0
<=> -3k² + 10k - 3 ≥ 0
<=> 1/3 ≤ k ≤ 3
Vậy GTNN của A =1/3 khi (*) có nghiệm kép hay x = -b/2a=(k + 1)/2(1 - k) với k = 1/3 khi đó x = 1
(Thực ra dùng PP Miền giá trị ta còn tìm được Max A = 3 khi x = -1)
bài 2 nhân p vs x+y+xy rồi t định áp dụng bđt (x+y+z)(1/x+1/y+1/z)>=9 nhưng vướng