K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 9 2018

4, \(B=\left(2x-1\right)^2+\left(x+2\right)^2\)

\(=5x^2+5\ge5\)

Dấu "=" xảy ra khi x=0

5,\(A=4-x^2+2x=5-\left(x^2-2x+1\right)=5-\left(x-1\right)^2\le5\)

Dấu "=" xảy ra khi x=1

\(B=4x-x^2=4-\left(x^2-4x+4\right)=4-\left(x-2\right)^2\le4\)

Dấu "=" xảy ra khi x=2

25 tháng 9 2018

C.ơn bạn nhen 

28 tháng 7 2019

a) Ta có: A = 5x - 2x2 + 1 = -2(x2 - 5/2x + 25/16) +33/8 = -2(x - 5/4)2 + 33/8 

Ta luôn có: -2(x - 5/4)2 \(\le\)0\(\forall\)x

=> -2(x - 5/4)2 + 33/8 \(\le\)33/8\(\forall\)x

Dấu "=" xảy ra <=> x - 5/4 = 0 <=> x = 5/4

vậy Max của A = 33/8 tại x = 5/4

b) B = (x - 2)(9 - x) = 9x - x2 - 18 + 2x = -(x2 - 11x + 121/4) + 49/4 = -(x - 11/2)2 + 49/4

Ta luôn có: -(x - 11/2)2 \(\le\)\(\forall\)x

=> -(x - 11/2)2 + 49/4 \(\le\)49/4 \(\forall\)x

Dấu "=" xảy ra <=> x - 11/2 = 0 <=> x = 11/2

Vậy Max của B = 49/4 tại x = 11/2

a,  A= -2x2 + 5x + 1

           = -2 ( x2 - 5/2 x ) + 1

            \(=-2\left(x^2-\frac{2.5}{4}x+\frac{25}{16}\right)+\frac{33}{8}\)

          = \(\frac{33}{8}-2\left(x-\frac{5}{4}\right)^2\)\(\le\frac{33}{8}\forall x\)

   Dấu = xảy ra khi x - 5/4=0

                           \(\Rightarrow\)x=5/4

vậy GTLN của A = 33/8 khi x=5/4

b.

B=9x - 18 + 2x - x2    

= -x2 + 11x - 18

= - ( x2 - 11x) -18

= - (x2 - 2.x . 11/2 + 121/4 ) + 49/4

= 49/4 - (x-11/2)2

Dấu = xảy ra khi x-11/2 = 0

suy ra x = 11/2

vậy GTLN của B = 49/4 kgi x=11/2

#mã mã#

8 tháng 8 2019

\(\left(2x-1\right)^2+3\ge3\Rightarrow A=\frac{5}{\left(2x-1\right)^2+3}\le\frac{5}{3}\)

\(\text{Dấu = xảy ra khi }2x-1=0\)

\(\Leftrightarrow x=\frac{1}{2}\)

\(\text{Vậy Max}A=\frac{5}{3}\Leftrightarrow x=\frac{1}{2}\)

8 tháng 8 2019
  • GIẢI :

Ta có : \(\left(2x-1\right)^2\ge0\)

\(\Rightarrow(2x-1)^2+3\ge3\)

\(\Rightarrow\frac{1}{\left(2x-1\right)^2+3}\le\frac{1}{3}\)

\(\Rightarrow\frac{5}{\left(2x-1\right)^2+3}\le\frac{5}{3}\)

\(\Rightarrow\text{A}_{max}=\frac{5}{3}\).

Dấu "=" xảy ra khi : \(2x-1=0\Leftrightarrow x=\frac{1}{2}\).

Vậy \(\text{A}_{max}=\frac{5}{3}\) khi \(x=\frac{1}{2}\).

2 tháng 10 2020

a) ĐKXĐ : \(\hept{\begin{cases}x\ne0\\x\ne2\\x\ne-4\end{cases}}\)

\(A=\frac{3}{x+4}-\frac{x\left(x-1\right)}{x+4}\times\frac{2x-5}{x\left(x-2\right)\left(x+4\right)}-\frac{17}{\left(x+4\right)^2}\)

\(=\frac{3\left(x+4\right)}{\left(x+4\right)^2}-\frac{x\left(x-1\right)\left(2x-5\right)}{\left(x+4\right)x\left(x-2\right)\left(x+4\right)}-\frac{17}{\left(x+4\right)^2}\)

\(=\frac{3x+12}{\left(x+4\right)^2}-\frac{\left(x-1\right)\left(2x-5\right)}{\left(x+4\right)^2\left(x-2\right)}-\frac{17}{\left(x+4\right)^2}\)

\(=\frac{\left(3x+12\right)\left(x-2\right)}{\left(x+4\right)^2\left(x-2\right)}-\frac{2x^2-7x+5}{\left(x+4\right)^2\left(x-2\right)}-\frac{17\left(x-2\right)}{\left(x+4\right)^2\left(x-2\right)}\)

\(=\frac{3x^2+6x-24-2x^2+7x-5-17x+34}{\left(x+4\right)^2\left(x-2\right)}\)

\(=\frac{x^2-4x+5}{\left(x+4\right)^2\left(x-2\right)}=\frac{x^2-4x+5}{x^3+6x^2-32}\)

b) \(18A=1\)

<=> \(18\times\frac{x^2-4x+5}{x^3+6x^2-32}=1\)( ĐK : \(\hept{\begin{cases}x\ne0\\x\ne2\\x\ne-4\end{cases}}\))

<=> \(\frac{x^2-4x+5}{x^3+6x^2-32}=\frac{1}{18}\)

<=> 18( x2 - 4x + 5 ) = x3 + 6x2 - 32

<=> 18x2 - 72x + 90 = x3 + 6x2 - 32

<=> x3 + 6x2 - 32 - 18x+ 72x - 90 = 0

<=> x3 - 12x2 + 72x - 122 = 0

Rồi đến đây chịu á :) 

2 tháng 10 2020

Ý lộn == là \(\frac{x^2-2x}{x+4}\)ạ ==

28 tháng 2 2020

2/\(ĐKXĐ:x\ne-1\)

\(Q=\frac{2x^2+2}{\left(x+1\right)^2}=\frac{2\left(x+1\right)^2-4\left(x+1\right)+4}{\left(x+1\right)^2}\)

  \(=2-\frac{4}{x+1}+\frac{4}{\left(x+1\right)^2}\)

Đặt \(\frac{2}{x+1}=t\)

\(\Rightarrow Q=t^2-2t+2=\left(t-1\right)^2+1\ge1\forall t\)

\(\Rightarrow minQ=1\Leftrightarrow t=1\)

                           \(\Leftrightarrow\frac{2}{x+1}=1\)

                         \(\Leftrightarrow x=1\left(tmđkxđ\right)\)             

29 tháng 2 2020

Ta có: \(a^2+b^2\ge\frac{\left(a+b\right)^2}{2}=\frac{2^2}{2}=2\)

=> \(A\le\frac{2019}{2.2+2016}=\frac{2019}{2020}\)

Dấu "=" xảy ra <=> a = b = 1

17 tháng 12 2019

a) Phân thức xác định được \(\Leftrightarrow\hept{\begin{cases}2x+10\ne0\\x\ne0\\2x\left(x+5\right)\ne0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x\ne0\\x+5\ne0\end{cases}}\)

Vậy...

17 tháng 12 2019

b) \(P=\frac{x^2+2x}{2x+10}+\frac{x-5}{x}+\frac{50-5x}{2x\left(x+5\right)}\)

=> \(P=\frac{x\left(x^2+2x\right)+2\left(x-5\right)\left(x+5\right)+50-5x}{2x\left(x+5\right)}\)

=> \(P=\frac{x^3+2x^2+2x^2-50+50-5x}{2x\left(x+5\right)}\)

=> \(P=\frac{x^3+4x^2-5x}{2x\left(x+5\right)}=\frac{x\left(x-1\right)\left(x+5\right)}{2x\left(x+5\right)}=\frac{\left(x-1\right)}{2}\)

\(P=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)

13 tháng 3 2020

bạn ơi bạn kiểm tra lại đề thêm lần nữa xem có sai ko ?

13 tháng 3 2020

câu a mình rút gọn ra:

\(A=\frac{5-3x}{\left(2x-3\right)\left(x-1\right)}.\frac{x}{5+3x}\)

tới đây hết rút được rồi