K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(B=-\left(x^2-2x+\left|y-3\right|-3\right)\)

\(=-\left(x^2-2x+1+\left|y-3\right|-4\right)\)

\(=-\left(x-1\right)^2-\left|y-3\right|+4\le4\forall x\)

Dấu '=' xảy ra khi x=1 và y=3

19 tháng 9 2016

A=3-x2+2x-|y3|

A=4-(x2-2x+1)-|y-3|

A=4-(x-1)2-|y-3|

       Vì \(-\left(x-1\right)^2\le0;-\left|y-3\right|\le0\)

                Suy ra:\(4-\left(x-1\right)^2- \left|y-3\right|\le4\)

Dấu = xảy ra khi x-1=0;x=1

                           y-3=0;y=3

           Vậy Max A=4 khi x=1;3

15 tháng 8 2017

a) ta có : \(\left(x+1\right)^{2018}\ge0\) với mọi x \(\Rightarrow A=4-\left(x+1\right)^{2018}\le4\) với mọi x

\(\Rightarrow GTLN\) của A là 4 khi \(\left(x+1\right)^{2018}=0\Leftrightarrow x+1=0\Leftrightarrow x=-1\)

vậy \(GTLN\) của A là 4 khi \(x=-1\)

b) ta có : \(\left(x-3\right)^2\ge0\) với mọi x \(\Rightarrow B=\left(x-3\right)^2-2017\ge-2017\) với mọi x

\(\Rightarrow GTNN\) của B là \(-2017\) khi \(\left(x-3\right)^2=0\Leftrightarrow x-3=0\Leftrightarrow x=3\)

vậy \(GTNN\) của B là \(-2017\) khi \(x=3\)

c) ta có : \(\left(x+1\right)^2\ge0\) với mọi x \(\Rightarrow\left(x+1\right)^2+2\ge2\) với mọi x

ta có : \(C=\dfrac{4}{\left(x+1\right)^2+2}\) lớn nhất \(\Leftrightarrow\left(x+1\right)^2+2\) là số dương bé nhất

ta có : \(\left(x+1\right)^2+2\ge2\) với mọi x \(\Rightarrow\) GTNN của \(\left(x+1\right)^2+2\) là 2 khi \(\left(x+1\right)^2=0\Leftrightarrow x+1=0\Leftrightarrow x=-1\)

khi đó \(C=\dfrac{4}{\left(-1+1\right)^2+2}=\dfrac{4}{2}=2\)

vậy GTLN của C là 2 khi \(x=-1\)

d) ta có : \(\left\{{}\begin{matrix}\left(2x-y+1\right)^{2018}\ge0\forall x;y\\\left|y+1\right|\ge0\forall y\end{matrix}\right.\)

\(\Rightarrow D=\left(2x-y+1\right)^{2018}+\left|y+1\right|+2017\ge2017\) với mọi x ; y

\(\Rightarrow GTNN\) của D là 2017 khi \(\left\{{}\begin{matrix}\left(2x-y+1\right)^{2018}=0\\\left|y+1\right|=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x-y+1=0\\y+1=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=-1\\2x-\left(-1\right)+1=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=-1\\2x+1+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=-1\\2x=-2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=-1\\x=-1\end{matrix}\right.\)

vậy GTNN của D là 2017 khi \(x=y=-1\)

15 tháng 2 2020

\(A=\left|-x+8\right|-21\)

\(A=\left|-x+8\right|-21\ge-21\)

\(MinA=-21\Leftrightarrow-x+8=0\)\(\Leftrightarrow x=8\)

\(B=\left|-x-17\right|+\left|y-36\right|+12\)

\(B=\left|-x-17\right|+\left|y-36\right|+12\ge12\)

\(MinB=12\Leftrightarrow\hept{\begin{cases}-x-17=0\\y-36=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-17\\y=36\end{cases}}\)

\(C=-\left|2x+8\right|-35\)

\(C=-\left|2x+8\right|-35\le-35\)

\(MaxC=-35\Leftrightarrow2x+8=0\Leftrightarrow x=-4\)

15 tháng 2 2020

Trl

-Bạn kia làm đúng rồi !~

Học tốt 

nhé bạn :>

25 tháng 1 2017

\(\text{a) A = | -x + 8| - 21}\)
Vì | -x + 8| \(\le\) 0 ( với mọi x )
=> A = | -x + 8| - 21\(\ge\) -21
=> Amax = -21 khi | -x + 8| = 0 => -x + 8 = 0 => -x = -8 => x = 8
Vậy với Amin = -21 thì x = 8
b) \(B=\left|-x-17\right|+\left|y-36\right|+12\)
\(\left\{\begin{matrix}\left|-x-17\right|\ge0\\\left|y-36\right|\ge0\end{matrix}\right.\)=> \(\left|-x-17\right|+\left|y-36\right|\ge0\)
=> \(B=\left|-x-17\right|+\left|y-36\right|+12\le12\)
=> Bmin = 12 khi \(\left|-x-17\right|+\left|y-36\right|=0\)
=> \(\left\{\begin{matrix}\left|-x-17\right|=0\\\left|y-36\right|=0\end{matrix}\right.\)=> \(\left\{\begin{matrix}-x-17=0\\y-36=0\end{matrix}\right.\)=> \(\left\{\begin{matrix}-x=17\\y=36\end{matrix}\right.\)=>\(\left\{\begin{matrix}x=-17\\y=36\end{matrix}\right.\)
Vậy Bmin = 12 khi \(\left\{\begin{matrix}x=-17\\y=36\end{matrix}\right.\)
c) \(C=-\left|2x-8\right|-35\)
\(-\left|2x-8\right|\ge0\)
=> \(C=-\left|2x-8\right|-35\ge-35\)
=> Cmin = -35 khi \(-\left|2x-8\right|=0\)=> \(-2x-8=0\)=>\(-2x=8\)=> \(x=4\)
Vậy Cmin = -35 khi x = 4
d) \(D=3\left(3x-12\right)^2-37\)
\(\left(3x-12\right)^2\ge0\)
=> \(3\left(3x-12\right)^2\ge0\)
=> \(D=3\left(3x-12\right)^2-37\ge-37\)
=> Dmin = -37 khi \(3\left(3x-12\right)^2=0\) => \(\left(3x-12\right)^2=0\)=> \(3x-12=0\)=> \(3x=12\)=>\(x=4\)
Vậy Dmin = -37 khi x = 4

a, A=|-x+8|-21

Vì |-x+8|>hoặc =0 với mọi x

suy ra |-x+8|-21>hoặc = -21

Dấu = xảy ra khi và chỉ khi |-x+8|=0

Khi và chỉ khi -x+8=0

Khi và chỉ khi-x=-8

khi và chỉ khi x =8

Vậy GTNN của A là -21 tại x=8

18 tháng 7 2018

Giúp tớ nha các CTV

18 tháng 7 2018

b. B=2017-|3x-6|

Vì |3x-6| lớn hơn hoặc bằng 0  với mọi x € Z => B=2017-|3x-6| bé hơn hoặc bằng 2017 với mọi x € Z .

Dâu " =" xảy ra <=> |3x-6|=0<=>3x-6=0<=>3x=6<=>x=2

Vậy B max là : 2017 <=> x=2

8 tháng 2 2019

Để A lớn nhất thì:

    3-y = 0 Và x-y = 0

=> y =x = 3

=> GTLN của A là 2013 - I3 - 3I - (3 - 3)2

                           = 2013 - 0

                           = 2013

Vậy GTLN của A là 2013

8 tháng 2 2019

\(A=2013-\left|3-y\right|-\left(x-y\right)^2\)

Vì \(\left|3-y\right|\ge0;\left(x-y\right)^2\ge0\)

\(\Rightarrow A\le2013\Rightarrow A_{max}=2013\)

\(\Leftrightarrow\hept{\begin{cases}3-y=0\\x-y=0\end{cases}\Leftrightarrow\hept{\begin{cases}y=3\\x=3\end{cases}}}\)

2 tháng 8 2017

a, A = 3,5 + |x - 2017| - 9
= -5,5 + |x - 2017|
Ta có : |x - 2017| \(\ge0\Rightarrow-5,5+\left|x-2017\right|\ge-5,5\)
Dấu ''='' xảy ra <=> x - 2017 = 0 <=> x = 2017
Vậy GTNN của A = -5,5 <=> x = 2017
@Cô Bé Dễ Thương

1 tháng 6 2021

Nhận thấy \(\left(2x+\frac{1}{3}\right)^{44}\ge0\forall x\)

=> \(\left(2x+\frac{1}{3}\right)^{44}-1\ge-1\forall x\)

Dấu "=" xảy ra <=> \(2x+\frac{1}{3}=0\Rightarrow x=-\frac{1}{6}\)

Vậy Min A  = -1 <=> X = -1/6

1 tháng 6 2021

a, \(\left(2x+\frac{1}{3}\right)^{44}\ge0\forall x\)

\(\Rightarrow\left(2x+\frac{1}{3}\right)^{44}-1\ge-1\)

Dấu "=" xảy ra <=> 2x+1/3=0 <=> x= -1/6

27 tháng 11 2016

a) (2x+1)(y-3)=10

\(\Rightarrow\)\(\begin{cases}\left(2x+1\right)=10\\\left(y-3\right)=10\end{cases}\) \(^{_{ }\Rightarrow}\) \(\begin{cases}x=4,5\\y=7\end{cases}\)

Vậy x= 4,5 và y=7

5 tháng 3 2019

a) (2x+1)(y-3)=10=1.10=10.1=2.5=5.2

\(\Rightarrow\left[{}\begin{matrix}2x+1=1;y-3=10\\2x+1=10;y-3=1\\2x+1=2;y-3=5\\2x+1=5;y-3=2\end{matrix}\right.\)

Lại có 2x+1 là số lẻ \(\Rightarrow\left[{}\begin{matrix}2x+1=1;y-3=10\\2x+1=5;y-3=2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0;y=13\\x=2;y=5\end{matrix}\right.\)

Vậy: \(\left(x;y\right)=\left(0;13\right)\left(2;5\right)\)