K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2020

a) \(A=x\cdot\left(-1\right)^n\cdot\left|x\right|\)

\(A=x\cdot\left(-1\right)\cdot x\)

\(A=-x^2\)

b) \(\frac{x}{y}-\frac{2}{3}=\frac{y}{z}-\frac{4}{5}=\frac{z}{t}-\frac{6}{7}=0\)và \(x+y+z+t=315\)

Xét :

\(\frac{x}{y}-\frac{2}{3}=0\Leftrightarrow\frac{x}{y}=\frac{2}{3}\Leftrightarrow\frac{x}{2}=\frac{y}{3}\Leftrightarrow\frac{x}{8}=\frac{y}{12}\)

\(\frac{y}{z}-\frac{4}{5}=0\Leftrightarrow\frac{y}{z}=\frac{4}{5}\Leftrightarrow\frac{y}{4}=\frac{z}{5}\Leftrightarrow\frac{y}{12}=\frac{z}{15}\)

\(\frac{z}{t}-\frac{6}{7}=0\Leftrightarrow\frac{z}{t}=\frac{6}{7}\Leftrightarrow\frac{z}{6}=\frac{t}{7}\Leftrightarrow\frac{z}{15}=\frac{t}{\frac{35}{2}}\)

\(\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{t}{\frac{35}{2}}\) và \(x+y+z+t=315\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{t}{\frac{35}{2}}=\frac{x+y+z+t}{8+12+15+\frac{35}{2}}=\frac{315}{\frac{105}{2}}=6\)

\(\frac{x}{8}=6\Leftrightarrow x=48\)

\(\frac{y}{12}=6\Leftrightarrow y=72\)

\(\frac{z}{15}=6\Leftrightarrow z=90\)

\(\frac{t}{\frac{35}{2}}=6\Leftrightarrow t=105\)

11 tháng 7 2020

ta có

 \(\frac{x}{y}-\frac{2}{3}=0\Leftrightarrow\frac{x}{y}=\frac{2}{3}\Leftrightarrow\frac{x}{2}=\frac{y}{3}\)

\(\frac{y}{z}-\frac{4}{5}=0\Leftrightarrow\frac{y}{z}=\frac{4}{5}\Leftrightarrow\frac{y}{4}=\frac{z}{5}\)

\(\frac{z}{t}-\frac{6}{7}=0\Leftrightarrow\frac{z}{t}=\frac{6}{7}\Leftrightarrow\frac{z}{7}=\frac{t}{6}\)

ta lại có

\(\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\\frac{y}{4}=\frac{z}{5}\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{x}{8}=\frac{y}{12}\\\frac{y}{12}=\frac{z}{15}\end{cases}}}\Leftrightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\left(1\right)\)

\(\hept{\begin{cases}\frac{y}{12}=\frac{z}{15}\\\frac{z}{7}=\frac{t}{6}\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{y}{84}=\frac{z}{105}\\\frac{z}{105}=\frac{t}{90}\end{cases}}}\Leftrightarrow\frac{y}{84}=\frac{z}{105}=\frac{t}{90}\left(2\right)\)

ta kết hợp (1) và (2) 

\(\hept{\begin{cases}\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\\\frac{y}{84}=\frac{z}{105}=\frac{t}{90}\end{cases}}\Leftrightarrow\frac{x}{57}=\frac{y}{84}=\frac{z}{105}=\frac{t}{90}\)và \(x+y+z+t=315\)

theo tính chất dãy tỉ số = nhau

có \(\frac{x}{57}=\frac{y}{84}=\frac{z}{105}=\frac{t}{90}=\frac{x+y+z+t}{57+84+105+90}=\frac{315}{336}=\frac{15}{16}\)

thay vào

21 tháng 8 2015

Để D nguyên thì

8n-5 chia hết cho 3n+2

=> 24n-15 chia hết cho 3n+2

=> 24n+16-31 chia hết cho 3n+2

Vì 24n+16 chia hết cho 3n+2

=> -31 chia hết cho 3n+2

=> 3n+2 thuộc Ư(31)

3n+2n
1-1/3
-1-1
3129/3
-31-11

Mà n nguyên

=> n \(\in\){-1; -11}


Gọi ƯCLN(8n-5; 3n+2) là d. Ta có:

8n-5 chia hết cho d => 24n-15 chia hết cho d

3n+2 chia hết cho d => 24n+16 chia hết cho d

=> 24n+16-(24n-15) chia hết cho d

=> 31 chia hết cho d

Giả dử phân số rút gọn được

=> 3n+2 chia hết cho 31

=> 3n+2+31 chia hết cho 31

=> 3n+33 chia hết cho 31

=> 3(n+11) chia hết cho 31

=> n+11 chia hết cho 31

=> n = 31k-11

KL: Để D tối giản thì n \(\ne\)31k-11