K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
25 tháng 7 2021

\(y=\left(cos^2x+sin^2x\right)\left(cos^2x-sin^2x\right).sinx.cosx\)

\(=\left(cos^2x-sin^2x\right).\dfrac{1}{2}\left(2sinx.cosx\right)=\dfrac{1}{2}cos2x.sin2x\)

\(=\dfrac{1}{4}sin4x\)

Do \(-1\le sin4x\le1\Rightarrow-\dfrac{1}{4}\le y\le\dfrac{1}{4}\)

\(y_{min}=-\dfrac{1}{4}\) khi \(sin4x=1\)

\(y_{max}=\dfrac{1}{4}\) khi \(sin4x=1\)

NV
20 tháng 9 2020

1.

Các hàm \(sinx;sin\frac{x}{2};sin\frac{x}{3};...;sin\frac{x}{10}\) có chu kì lần lượt là \(2\pi;4\pi;6\pi;...;20\pi\)

\(\Rightarrow\) Chu kì của hàm đã cho là \(BCNN\left(2\pi;4\pi;...;20\pi\right)=15120\pi\)

2.

a.

\(y=cos^22x+3cos2x+3\)

\(y=\left(cos2x+1\right)\left(cos2x+2\right)+1\ge1\Rightarrow y_{min}=1\) khi \(cos2x=-1\)

\(y=\left(cos2x-1\right)\left(cos2x+4\right)+7\le7\Rightarrow y_{max}=7\) khi \(cos2x=1\)

b.

Đặt \(a=4sinx-3cosx\Rightarrow a^2\le\left(4^2+\left(-3\right)^2\right)\left(sin^2x+cos^2x\right)=25\)

\(\Rightarrow-5\le a\le5\)

\(y=a^2-4a+1\) với \(a\in\left[-5;5\right]\)

\(y=\left(a-2\right)^2-3\ge-3\Rightarrow y_{min}=-3\) khi \(a=2\)

\(y=\left(a-9\right)\left(a+5\right)+46\le46\Rightarrow y_{max}=46\) khi \(a=-5\)

21 tháng 9 2020

Em ko hiểu câu 2a

NV
14 tháng 9 2020

a/ \(y=sin2x+\left(\sqrt{3}+1\right)cos2x+sin^2x-cos^2x-1\)

\(=sin2x+\sqrt{3}cos2x-1=2sin\left(2x+\frac{\pi}{3}\right)-1\)

Do \(-1\le sin\left(2x+\frac{\pi}{3}\right)\le1\Rightarrow-3\le y\le1\)

b/ \(y=2sin^2x-2cos^2x-3sinx.cosx-1\)

\(=-2cos2x-\frac{3}{2}sin2x-1=-\frac{5}{2}\left(\frac{3}{5}sinx+\frac{4}{5}cosx\right)-1\)

\(=-\frac{5}{2}sin\left(x+a\right)-1\Rightarrow-\frac{7}{2}\le y\le\frac{3}{2}\)

c/ \(y=1-sin2x+2cos2x+\frac{3}{2}sin2x=\frac{1}{2}sin2x+2cos2x+1\)

\(=\frac{\sqrt{17}}{2}\left(\frac{1}{\sqrt{17}}sin2x+\frac{4}{\sqrt{17}}cos2x\right)+1=\frac{\sqrt{17}}{2}sin\left(2x+a\right)+1\)

\(\Rightarrow-\frac{\sqrt{17}}{2}+1\le y\le\frac{\sqrt{17}}{2}+1\)

1 tháng 8 2020

hk hỉu ngay dấu tđ thứ 1 mong giải thích

NV
1 tháng 8 2020

Nhân 2 vế với \(sin4x\) sau đó tách:

\(\frac{sin4x}{cosx}+\frac{sin4x}{sin2x}=\frac{2sin2x.cos2x}{cosx}+\frac{2sin2x.cos2x}{sin2x}=\frac{4sinx.cosx.cos2x}{cosx}+\frac{2sin2x.cos2x}{sin2x}\)

Rồi rút gọn

NV
29 tháng 9 2020

a/ \(m=0\) pt vô nghiêm

Với \(m\ne0\Rightarrow cosx=\frac{m+1}{m}\)

\(-1\le cosx\le1\Rightarrow-1\le\frac{m+1}{m}\le1\)

\(\Rightarrow m\le-\frac{1}{2}\)

b/ \(\left(sin^2x+cos^2x\right)^3-3sin^2x.cos^2x\left(sin^2x+cos^2x\right)-cos4x=m\)

\(\Leftrightarrow1-\frac{3}{4}sin^22x-cos4x=m\)

\(\Leftrightarrow1-\frac{3}{4}sin^22x-\left(1-2sin^22x\right)=m\)

\(\Leftrightarrow\frac{5}{4}sin^22x=m\)

Do \(0\le\frac{5}{4}sin^22x\le\frac{5}{4}\Rightarrow0\le m\le\frac{5}{4}\)

c/ \(\Leftrightarrow1-\frac{3}{4}sin^22x=m\left(1-\frac{1}{4}sin^22x\right)\)

\(\Leftrightarrow\left(m-3\right)sin^22x=4m-4\)

- Với \(m=3\) pt vô nghiệm

- Với \(m\ne3\Rightarrow sin^22x=\frac{4m-4}{m-3}\)

Do \(0\le sin^22x\le1\Rightarrow0\le\frac{4m-4}{m-3}\le1\)

\(\Rightarrow\frac{1}{3}\le m\le1\)