Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(y=\frac{1}{2}sin2x-1\)
Do \(-1\le sin2x\le1\Rightarrow-\frac{3}{2}\le y\le-\frac{1}{2}\)
\(y_{min}=-\frac{3}{2}\) ; \(y_{max}=-\frac{1}{2}\)
2.
\(y=5+5\left(\frac{4}{5}cosx-\frac{3}{5}sinx\right)=5+5cos\left(x+a\right)\) với \(cosa=\frac{4}{5}\)
Do \(-1\le cos\left(x+a\right)\le1\Rightarrow0\le y\le10\)
\(y_{min}=0\) ; \(y_{max}=10\)
\(y=2+2cos\left(x-\frac{\pi}{6}\right)-7=2cos\left(x-\frac{\pi}{6}\right)-5\)
\(0\le x\le\pi\Rightarrow-\frac{\pi}{6}\le x-\frac{\pi}{6}\le\frac{5\pi}{6}\)
\(\Rightarrow-\frac{\sqrt{3}}{2}\le cos\left(x-\frac{\pi}{6}\right)\le1\)
\(\Rightarrow-\sqrt{3}-5\le y\le-3\)
\(y_{min}=-\sqrt{3}-5\) khi \(x=\pi\)
\(y_{max}=-3\) khi \(x=\frac{\pi}{6}\)
Nguyễn Lê Phước ThịnhPhạm Vũ Trí DũngMiyuki Misaki
giúp e vs ạ
\(y=4\left(1-sin^2x\right)+2sinx+2=-4sin^2x+2sinx+6\)
Đặt \(sinx=t\in\left[-1;1\right]\Rightarrow y=f\left(t\right)=-4t^2+2t+6\)
\(-\dfrac{b}{2a}=\dfrac{1}{4}\in\left[-1;1\right]\)
\(f\left(-1\right)=0\) ; \(f\left(\dfrac{1}{4}\right)=\dfrac{25}{4}\); \(f\left(1\right)=4\)
\(\Rightarrow y_{max}=\dfrac{25}{4}\) khi \(sinx=\dfrac{1}{4}\)
\(y_{min}=0\) khi \(sinx=-1\)
Ta có: \(y=4cos^2x+2sinx+2=4-4sin^2x+2sinx+2=-4sin^2x+2sinx+6=-\left(4sin^2x-2sinx+\dfrac{1}{16}-\dfrac{1}{16}-6\right)=-\left(2sin^2x-\dfrac{1}{4}\right)^2+\dfrac{97}{16}\)
Ta có: \(-\left(2sin^2x-\dfrac{1}{4}\right)^2\le0\Rightarrow y\le\dfrac{97}{16}\)
Vậy \(y_{max}=\dfrac{97}{16}\)
Sửa: \(y=3\sin x+4\cos x+2\)
Áp dụng BĐT Bunhiacopski được:
\(\left(3\sin x+4\cos x\right)^2\le\left(3^2+4^2\right)\left(\sin x^2+\cos x^2\right)=25\)
\(\Leftrightarrow-5\le3\sin x+4\cos x\le5\\ \Leftrightarrow-3\le3\sin x+4\cos x+2\le7\\ \Leftrightarrow y_{min}=-3\\ y_{max}=7\)
\(y=4cos^2\left(\dfrac{x}{2}-\dfrac{\pi}{12}\right)-7=2\left[cos\left(x-\dfrac{\pi}{6}\right)+1\right]-7=2cos\left(x-\dfrac{\pi}{6}\right)-5\)
Đặt \(x-\dfrac{\pi}{6}=t\Rightarrow t\in\left[-\dfrac{\pi}{6};\dfrac{5\pi}{6}\right]\)
\(\Rightarrow y=2cost-5\)
Do \(t\in\left[-\dfrac{\pi}{6};\dfrac{5\pi}{6}\right]\Rightarrow cost\in\left[-\dfrac{\sqrt{3}}{2};1\right]\)
\(\Rightarrow y\in\left[-5-\sqrt{3};-3\right]\)
\(y_{max}=-3\) khi \(t=0\) hay \(x=\dfrac{\pi}{6}\)
\(y_{min}=-5-\sqrt{3}\) khi \(y=\dfrac{5\pi}{6}\) hay \(x=\pi\)
đợi ông lm thì t ra r
\(y=4cos^2x-4cosx+1+1=\left(2cosx-1\right)^2+1\ge1\)
\(y_{min}=1\) khi \(cosx=\frac{1}{2}\)
\(y=4cos^2x-4cosx-8+10=4\left(cosx+1\right)\left(cosx-2\right)+10\)
Do \(-1\le cosx\le1\Rightarrow\left\{{}\begin{matrix}cosx+1\ge0\\cosx-2< 0\end{matrix}\right.\)
\(\Rightarrow\left(cosx+1\right)\left(cosx-2\right)\le0\)
\(\Rightarrow y\le10\Rightarrow y_{max}=10\) khi \(cosx=-1\)