Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(y=4-\frac{5}{4}\left(2sin2x.cos2x\right)^2\)
\(y=4-\frac{5}{4}sin^24x\)
Do \(0\le sin^24x\le1\)
\(\Rightarrow\frac{11}{4}\le y\le4\)
\(y_{min}=\frac{11}{4}\) khi \(sin^24x=1\)
\(y_{max}=4\) khi \(sin^24x=0\)
\(y=2\left(\frac{1}{2}-\frac{1}{2}cos2x\right)+cos^22x=cos^22x-cos2x+1\)
\(=\left(cos2x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
\(\Rightarrow y_{min}=\frac{3}{4}\) khi \(cos2x=\frac{1}{2}\)
\(y=cos^22x-2cos2x+cos2x-2+3\)
\(y=\left(cos2x-2\right)\left(cos2x+1\right)+3\)
Do \(-1\le cos2x\le1\Rightarrow\left\{{}\begin{matrix}cos2x-2< 0\\cos2x+1\ge0\end{matrix}\right.\) \(\Rightarrow\left(cos2x-2\right)\left(cos2x+1\right)\le0\)
\(\Rightarrow y\le3\Rightarrow y_{max}=3\) khi \(cos2x=-1\)
1.
\(3sin^22x-2sin2x.cos2x-4cos^22x=2\)
\(\Leftrightarrow-\dfrac{3}{2}\left(1-2sin^22x\right)-2sin2x.cos2x-2\left(2cos^22x-1\right)=\dfrac{5}{2}\)
\(\Leftrightarrow sin4x+\dfrac{7}{2}cos4x=-\dfrac{5}{2}\)
\(\Leftrightarrow\dfrac{\sqrt{53}}{2}\left(\dfrac{2}{\sqrt{53}}sin4x+\dfrac{7}{\sqrt{53}}cos4x\right)=-\dfrac{5}{2}\)
\(\Leftrightarrow sin\left(4x+arccos\dfrac{2}{\sqrt{53}}\right)=-\dfrac{5}{\sqrt{53}}\)
\(\Leftrightarrow\left[{}\begin{matrix}4x+arccos\dfrac{2}{\sqrt{53}}=arcsin\left(-\dfrac{5}{\sqrt{53}}\right)+k2\pi\\4x+arccos\dfrac{2}{\sqrt{53}}=\pi-arcsin\left(-\dfrac{5}{\sqrt{53}}\right)+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{4}arccos\dfrac{2}{\sqrt{53}}+\dfrac{1}{4}arcsin\left(-\dfrac{5}{\sqrt{53}}\right)+\dfrac{k\pi}{2}\\x=\dfrac{\pi}{4}-\dfrac{1}{4}arccos\dfrac{2}{\sqrt{53}}-\dfrac{1}{4}arcsin\left(-\dfrac{5}{\sqrt{53}}\right)+\dfrac{k\pi}{2}\end{matrix}\right.\)
2.
\(2\sqrt{3}cos^2x+6sinx.cosx=3+\sqrt{3}\)
\(\Leftrightarrow\sqrt{3}\left(2cos^2x-1\right)+6sinx.cosx=3\)
\(\Leftrightarrow\sqrt{3}cos2x+3sin2x=3\)
\(\Leftrightarrow2\sqrt{3}\left(\dfrac{1}{2}cos2x+\dfrac{\sqrt{3}}{2}sin2x\right)=3\)
\(\Leftrightarrow cos\left(2x-\dfrac{\pi}{3}\right)=\dfrac{\sqrt{3}}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-\dfrac{\pi}{3}=\dfrac{\pi}{6}+k2\pi\\2x-\dfrac{\pi}{3}=-\dfrac{\pi}{6}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+k\pi\\x=\dfrac{\pi}{12}+k\pi\end{matrix}\right.\)
y=(sin2x-3)^2-6
-1<=sin2x<=1
=>-4<=sin2x-3<=-2
=>4<=(sin2x-3)^2<=16
=>-2<=y<=10
y min khi sin2x-3=-2
=>sin 2x=1
=>2x=pi/2+k2pi
=>x=pi/4+kpi
y max khi sin 2x-3=-4
=>sin 2x=-1
=>2x=-pi/2+k2pi
=>x=-pi/4+kpi
Đề là \(y=2sin^2x+cos^22x\) hả bạn? Và tìm GTNN, GTLN hay tìm tập giá trị?
1.
\(y=\sqrt{5-2\cos ^2x\sin ^2x}=\sqrt{5-\frac{1}{2}(2\cos x\sin x)^2}=\sqrt{5-\frac{1}{2}\sin ^22x}\)
Dễ thấy:
$\sin ^22x\geq 0\Rightarrow y=\sqrt{5-\frac{1}{2}\sin ^22x}\leq \sqrt{5}$
Vậy $y_{\max}=\sqrt{5}$
$\sin ^22x\leq 1\Rightarrow y=\sqrt{5-\frac{1}{2}\sin ^22x}\geq \sqrt{5-\frac{1}{2}}=\frac{3\sqrt{2}}{2}$
Vậy $y_{\min}=\frac{3\sqrt{2}}{2}$
2.
$y=1+\frac{1}{2}\sin 2x\cos 2x=1+\frac{1}{4}.2\sin 2x\cos 2x$
$=1+\frac{1}{4}\sin 4x$
Vì $-1\leq \sin 4x\leq 1$
$\Rightarrow \frac{5}{4}\leq 1+\frac{1}{4}\sin 4x\leq \frac{3}{4}$
$\Leftrightarrow \frac{5}{4}\leq y\leq \frac{3}{4}$
Vậy $y_{\max}=\frac{5}{4}; y_{\min}=\frac{3}{4}$
e/
\(\Leftrightarrow1+cos2x+1+cos4x+1+cos6x=3+3cosx.cos4x\)
\(\Leftrightarrow cos2x+cos6x+cos4x-3cosx.cos4x=0\)
\(\Leftrightarrow2cos4x.cos2x+cos4x-3cosx.cos4x=0\)
\(\Leftrightarrow cos4x\left(2cos2x+1-3cosx\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos4x=0\Rightarrow x=\frac{\pi}{8}+\frac{k\pi}{4}\\2cos2x-3cosx+1=0\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow2\left(2cos^2x-1\right)-3cosx+1=0\)
\(\Leftrightarrow4cos^2x-3cosx-1=0\)
\(\Rightarrow\left[{}\begin{matrix}cosx=1\\cosx=-\frac{1}{4}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=k2\pi\\x=\pm arccos\left(-\frac{1}{4}\right)+k2\pi\end{matrix}\right.\)
d/
\(\Leftrightarrow5\left(1+cosx\right)=2+\left(sin^2x-cos^2x\right)\left(sin^2x+cos^2x\right)\)
\(\Leftrightarrow5\left(1+cosx\right)=2+sin^2x-cos^2x\)
\(\Leftrightarrow5+5cosx=2+1-cos^2x-cos^2x\)
\(\Leftrightarrow2cos^2x+5cosx+2=0\)
\(\Rightarrow\left[{}\begin{matrix}cosx=-\frac{1}{2}\\cosx=-2\left(l\right)\end{matrix}\right.\)
\(\Rightarrow x=\pm\frac{2\pi}{3}+k2\pi\)
a/ \(3sin^22x+sin2x-4=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sin2x=1\\sin2x=-\frac{4}{3}\left(l\right)\end{matrix}\right.\)
\(\Rightarrow x=\frac{\pi}{4}+k\pi\)
b/ Đặt \(sin2x=t\Rightarrow-1\le t\le1\)
Pt trở thành: \(f\left(t\right)=3t^2+4mt-4=0\) (1)
Để pt đã cho có nghiệm \(\Leftrightarrow\) (1) có ít nhất 1 nghiệm thuộc đoạn \(\left[-1;1\right]\)
Do \(ac=-12< 0\) nên (1) luôn có 2 nghiệm pb trái dấu
Để (1) có 2 nghiệm thỏa \(t_1< -1< 1< t_2\)
\(\Leftrightarrow\left\{{}\begin{matrix}f\left(-1\right)< 0\\f\left(1\right)< 0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}-1-4t< 0\\-1+4t< 0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}t>-\frac{1}{4}\\t< \frac{1}{4}\end{matrix}\right.\) \(\Leftrightarrow-\frac{1}{4}< t< \frac{1}{4}\)
Vậy để pt có ít nhất 1 nghiệm thuộc \(\left[-1;1\right]\Leftrightarrow\left[{}\begin{matrix}t\ge\frac{1}{4}\\t\le-\frac{1}{4}\end{matrix}\right.\)
Dấu "=" thứ 2 là bạn nhầm dấu "+" đúng ko nhỉ?
\(y=4cos^22x+3sin^22x-4cos4x\)
\(y=4\left(\frac{cos4x+1}{2}\right)+3\left(\frac{1-cos4x}{2}\right)-4cos4x\)
\(y=\frac{7}{2}-\frac{7}{2}cos4x\)
Do \(-1\le cos4x\le1\Rightarrow0\le y\le7\)
\(y_{min}=0\) khi \(cos4x=1\)
\(y_{max}=7\) khi \(cos4x=-1\)