Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\)\(\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}+1}{x+\sqrt{x}+1}+\frac{1}{1-\sqrt{x}}\)
\(=\frac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\) \(\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(x+\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\) \(-\frac{\sqrt{x}+x+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+x+1\right)}\)
\(=\frac{x+2+x-1-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
= \(\frac{x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(=\frac{\sqrt{x}}{\sqrt{x}+x+1}\)
học tốt
\(A=\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}+1}{x+\sqrt{x}+1}+\frac{1}{1-\sqrt{x}}\)
\(A=\frac{x+2}{\sqrt{x}^3-1^3}+\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\frac{-1\left(x+\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(A=\frac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\frac{x-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\frac{-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(A=\frac{x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(A=\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}=\frac{\sqrt{x}}{x+\sqrt{x}+1}\)
Ta có : x + 1 \(\ge\)\(2\sqrt{x}\)nên \(x+\sqrt{x}+1\ge3\sqrt{x}\)
\(\Rightarrow A=\frac{\sqrt{x}}{x+\sqrt{x}+1}\le\frac{\sqrt{x}}{3\sqrt{x}}=\frac{1}{3}\)
Vậy GTLN của A là \(\frac{1}{3}\)\(\Leftrightarrow x=1\)
Ai trả lời nhanh và chính xác mình k
- LUYỆN TẬP
- HỌC BÀI
- HỎI ĐÁP
- KIỂM TRA
- Lê Thị Tuyết
ta có \(\frac{x+\sqrt{x}+1}{x+2\sqrt{x}+1}=\frac{\left(\sqrt{x}\right)^2+\sqrt{x}+1}{\left(\sqrt{x}+1\right)^2}\)
đặt (căn x )+1 = a=> căn x = a- 1 => x = (a - 1 ) ^2 thay vào rùi tự làm nhé ^-^
Đặt \(\sqrt{x}=a\ge0\)
\(\Rightarrow A=\frac{a^2+a+1}{a^2+2a+1}\)
\(\Leftrightarrow\left(A-1\right)a^2+\left(2A-1\right)a+A-1=0\)
Để PT theo nghiệm a có nghiệm thì
\(\Delta=\left(2A-1\right)^2-4\left(A-1\right)\left(A-1\right)\ge0\)
\(\Leftrightarrow4A-3\ge0\)
\(\Leftrightarrow A\ge\frac{3}{4}\)
Ta lại có: \(A=\frac{a^2+a+1}{a^2+2a+1}=1-\frac{a}{a^2+2a+1}\le1\)
Vậy ...
P = \(\left(\frac{\sqrt{x}-2}{x-1}-\frac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}\right)\). \(\frac{\left(x-1\right)^2}{2}\)( x\(\ge0\); x\(\ne\)1)
= \(\left(\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\right)\) . \(\frac{\left(x-1\right)^2}{2}\)
= \(\frac{x-\sqrt{x}+2-x-\sqrt{x}+2}{\sqrt{x}-1}\). \(\frac{x-1}{2}\)
= \(\frac{\left(-2\sqrt{x}+4\right)\left(\sqrt{x}+1\right)}{2}\)
= \(\left(\sqrt{x}+1\right)\left(2-\sqrt{x}\right)\)
= -x2 + \(\sqrt{x}\)+ 2
b. tự tính nha
c, P = -x2 + \(\sqrt{x}+2\)
= - (x2 - 2.x.1/2 + 1/4) +2 +1/4
= - (x-1/2)2+ 9/4
ta có (x - 1/2)2 \(\ge0\forall x\)\(\Rightarrow-\left(x-\frac{1}{2}\right)^2\le0\forall x\)
\(\Rightarrow-\left(x-\frac{1}{2}\right)^2+\frac{9}{4}\le\frac{9}{4}\forall x\)
dấu "=" xảy ra khi và chỉ khi x-1/2 = 0
x=1/2
vậy GTLN của P= 9/4 khi và chỉ khi x=1/2
#mã mã#
a.
\(A=\frac{15\sqrt{x}-11-\left(3\sqrt{x}-2\right)\left(\sqrt{x}+3\right)-\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{15\sqrt{x}-11-3x-9\sqrt{x}+2\sqrt{x}+6-2x+2\sqrt{x}-3\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{\left(\sqrt{x}-1\right)\left(2-5\sqrt{x}\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{2-5\sqrt{x}}{\sqrt{x}+3}\)
b.Ta co:
\(A=\frac{2-5\sqrt{x}}{\sqrt{x}+3}=\frac{-5\left(\sqrt{x}+3\right)+17}{\sqrt{x}+3}=-5+\frac{17}{\sqrt{x}+3}\le-5+\frac{17}{3}=\frac{2}{3}\)
Dau '=' xay ra khi \(x=0\)
Vay \(A_{max}=\frac{2}{3}\)khi \(x=0\)