Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Viết biểu thức sau đưới dạng hiệu 2 bình phương:
a)4x2+6x+7-y2-6y
b)x2+y2-4x-6y+13
c)4x2-12x-y2+2y+8
\(x^2+y^2-4x-6y+13\)
\(=\left(x^2-4x+4\right)+\left(y^2-6y+9\right)\)
\(=\left(x-2\right)^2+\left(y-3\right)^2\)
hk
tốt...
Theo bài ra ta có: \(\left\{{}\begin{matrix}4x^2+y^2=4\\x^2-3xy+2y^2=M\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4Mx^2+My^2=4M\\4x^2-12xy+8y^2=7M\end{matrix}\right.\)
Từ hệ trên suy ra: \(x^2\left(4M-4\right)+12xy+My^2-8y^2=0\)
Coi phương trình trên là phương trình bậc hai ẩn x
Xét trường hợp y = 0, phương trình trở thành: \(x^2\left(4M-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\M=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}M=0\left(x=y=0\right)\\M=1\end{matrix}\right.\)
Với y khác 0, chia cả 2 vế cho \(y^2\) và đặt \(t=\frac{x}{y}\) ta được:
\(\left(4M-4\right)t^2-12t+M-8=0\)
Với \(M=1\) thì \(t=-\frac{7}{12}\)
Với M khác 1 thì:
\(\Delta'\) \(=36-\left(4M-4\right)\left(M-8\right)=36-\left(4M^2-36M+32\right)=-4M^2+36M+4\)
Phương trình có nghiệm khi \(\Delta'=-4M^2+36M+4\ge0\)
Vậy \(\frac{9-\sqrt{85}}{2}\le M\le\frac{9+\sqrt{85}}{2}\)
\(Min\) của \(M=\frac{9-\sqrt{85}}{2}\)
\(Max\) của \(M=\frac{9+\sqrt{85}}{2}\)
ta có \(\left(x+y+z\right)^2\le3\left(x^2+y^2+z^2\right)=9\Rightarrow x+y+z\le3\)
ta có :\(\sqrt{4x+5}=\frac{\sqrt{9\left(4x+5\right)}}{3}\le\frac{9+4x+5}{2\times3}=\frac{2x+7}{3}\)
tương tự ta sẽ có ; \(A\le\frac{2x+7}{3}+\frac{2y+7}{3}+\frac{2z+7}{3}=\frac{2}{3}\left(x+y+z\right)+7\le\frac{2}{3}\times3+7=9\)
Vậy GTLN của A=9
dấu bằng xảy ra khi x= y= z =1
\(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)
\(\Leftrightarrow2x^2+2y^2+2z^2\ge2\left(xy+yz+zx\right)\)
\(\Leftrightarrow\left(x+y+z\right)^2\le3\left(x^2+y^2+z^2\right)=3.3=9\)
\(\Rightarrow x+y+z\le3\).
\(A=\sqrt{4x+5}+\sqrt{4y+5}+\sqrt{4z+5}\)
\(\le\sqrt{\left(1^2+1^2+1^2\right)\left(4x+5+4y+5+4z+5\right)}\)
\(=\sqrt{3\left[4\left(x+y+z\right)+15\right]}=9\)
Dấu \(=\)khi \(x=y=z=1\).
Ta có: B = 4x + 6y - x2 - y2 - 11 = -(x2 - 4x + 4) - (y2 - 6y + 9) + 2 = -(x - 2)2 - (y - 3)2 + 2
Ta luôn có: -(x - 2)2 \(\le\)0 \(\forall\)x
-(y - 3)2 \(\le\)0 \(\forall\)y
=> -(x - 2)2 - (y - 3)2 + 2 \(\le\)2 \(\forall\)x; y
Dấu "=" xảy ra khi : \(\hept{\begin{cases}x-2=0\\y-3=0\end{cases}}\) <=> \(\hept{\begin{cases}x=2\\y=3\end{cases}}\)
Vậy Max của B = 2 tại x = 2 và y = 3
\(B=4x+6y-x^2-y^2-11.\)
\(=-\left[x^2-4x+y^2-6y+11\right]\)
\(=-\left[\left(x^2-4x+4\right)+\left(y^2-6y+9\right)-2\right]\)
\(=-\left(x-2\right)^2-\left(y-3\right)^2+2\)
\(B_{min}=2\Leftrightarrow\orbr{\begin{cases}x-2=0\\y-3=0\end{cases}\Rightarrow\orbr{\begin{cases}x=2\\y=3\end{cases}}}\)