Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(2x^2y^2-\frac{4}{3}x^2y+2xy\)
\(=xy\left(2xy-\frac{4}{3}x+2\right)\)
b) 2xy2.(x + 5y) - 4xy(5y + x)
= (5y + x)(2xy2 - 4xy)
= 2xy(5y + x)(y - 2)
c) 25 - 4x2 - y2 + 4xy
= 25 - (4x2 - 4xy + y2)
= 52 - (2x + y)2
= (5 - 2x - y)(5 + 2x + y)
d) x2 + 4x - 2xy - 4y +y2
= (x2 - 2xy + y2) + (4x - 4y)
= (x - y)2 + 4(x - y)
= (x - y)(x - y + 4)
e) 12y3 - 3x2y + 12xy - 12y
= 3y(4y2 - x2 + 4x - 4)
= 3y[4y2 - (x - 2)2]
= 3y(2y - x + 2)(2y + x - 2)
f) 64x4 + y4
= (8x2)2 + 16x2y2 + y4 - 16x2y2
= (8x2 + y2)2 - (4xy)2
= (8x2 + y2 - 4xy)(8x2 + y2 + 4xy)
a) \(2x^2y^2-\frac{4}{3}x^2y+2xy\)
b) \(2xy^2\left(x+5y\right)-4xy\left(5y+x\right)\)
\(=\left(x+5y\right)\left(2xy^2-4xy\right)\)
\(=2\left(x+5y\right)\left(xy^2-2xy\right)\)
c) \(25-4x^2-y^2+4xy\)
\(=25-\left(4x^2+y^2-4xy\right)\)
\(=5^2-\left[\left(2x\right)^2-2.2x.y+y^2\right]\)
\(=5^2-\left(2x-y\right)^2\)
\(=\left(5-2x+y\right)\left(5+2x-y\right)\)
d) \(x^2+4x-2xy-4y+y^2\)
\(=\left(x^2-2xy+y^2\right)+\left(4x-4y\right)\)
\(=\left(x-y\right)^2+4\left(x-y\right)\)
\(=\left(x-y\right)\left(x-y\right)+4\left(x-y\right)\)
\(=\left(x-y\right)\left(x-y+4\right)\)
e) \(12y^3-3x^2y+12xy-12y\)
f) \(64x^4+y^4\)
\(=\left(8x^2\right)^2+16x^2y^2+\left(y^2\right)^2-16x^2y^2\)
\(=\left(8x^2+y^2\right)^2-\left(4xy\right)^2\)
\(=\left(8x^2+y^2+4xy\right)\left(8x^2+y^2-4xy\right)\)
Answer:
3.
\(x^2+2y^2+2xy+7x+7y+10=0\)
\(\Rightarrow\left(x^2+2xy+y^2\right)+7x+7y+y^2+10=0\)
\(\Rightarrow\left(x+y\right)^2+7.\left(x+y\right)+y^2+10=0\)
\(\Rightarrow4S^2+28S+4y^2+40=0\)
\(\Rightarrow4S^2+28S+49+4y^2-9=0\)
\(\Rightarrow\left(2S+7\right)^2=9-4y^2\le9\left(1\right)\)
\(\Rightarrow-3\le2S+7\le3\)
\(\Rightarrow-10\le2S\le-4\)
\(\Rightarrow-5\le S\le-2\left(2\right)\)
Dấu " = " xảy ra khi: \(\left(1\right)\Rightarrow y=0\)
Vậy giá trị nhỏ nhất của \(S=x+y=-5\Rightarrow\hept{\begin{cases}y=0\\x=-5\end{cases}}\)
Vậy giá trị lớn nhất của \(S=x+y=-2\Rightarrow\hept{\begin{cases}y=0\\x=-2\end{cases}}\)
\(-\left(2x^2+y^2+2xy-4x-2y-5\right)\\ \\ =-\left(x^2+2x\left(y-1\right)+\left(y^2-2y+1\right)+\left(x^2-2x+1\right)-7\right)\\ =-\left(x^2+2x\left(y-1\right)+\left(y-1\right)^2+\left(x-1\right)^2-7\right)\\ =-\left(\left(x+y-1\right)^2+\left(x-1\right)^2-7\right)\\ =-\left(x+y-1\right)^2-\left(x-1\right)^2-7\)
\(\left(x+y-1\right)^2\ge0\\ \Rightarrow-\left(x+y-1\right)^2\le0\\ \left(x-1\right)^2\ge0\\ \Rightarrow-\left(x+y-1\right)^2-\left(x-1\right)^2\le0\\ \Rightarrow-\left(x+y-1\right)^2-\left(x-1\right)^2-7\le-7\)
Max A = -7 khi x=1 ; y=0
B) TT
1) ta có : \(x^2+5y^2-4xy+2y=3\Leftrightarrow\left(x-2y\right)^2+\left(y+1\right)^2=2\)
\(\Leftrightarrow\left(x-2y\right)^2=2-\left(y+1\right)^2\ge0\) \(\Leftrightarrow2\ge\left(y+1\right)^2\Leftrightarrow-\sqrt{2}\le y+1\le\sqrt{2}\)
\(\Leftrightarrow-\sqrt{2}-1\le y\le\sqrt{2}-1\)
ta lại có : \(\left(y+1\right)^2=2-\left(x-2y\right)^2\ge0\)
\(\Leftrightarrow2\ge\left(x-2y\right)^2\Leftrightarrow-\sqrt{2}\le x-2y\le\sqrt{2}\)
\(\Leftrightarrow-\sqrt{2}+2y\le x\le\sqrt{2}+2y\Leftrightarrow-2-3\sqrt{2}\le x\le-2+3\sqrt{2}\)
vậy \(x_{max}=-2+3\sqrt{2}\)
dâu "=" xảy ra khi \(y=\sqrt{2}-1\)
câu 3 : ta có : \(x^2+2y^2+2xy+7x+7y+10=0\)
\(\Leftrightarrow y^2=-\left(x+y\right)^2-7\left(x+y\right)-10\ge0\)
\(\Leftrightarrow-5\le x+y\le-2\)
\(\Rightarrow S_{max}=-2\) khi \(\left\{{}\begin{matrix}y^2=0\\x+y=-2\end{matrix}\right.\Leftrightarrow y=0;x=-2\)
\(S_{min}=-5\) khi \(\left\{{}\begin{matrix}y^2=0\\x+y=-5\end{matrix}\right.\Leftrightarrow y=0;x=-5\)
bài này có trong đề thi hsg trường mk :)
Có link câu này bạn tham khảo xem có được không nhé
https://h.vn/hoi-dap/question/535151.html
Học tốt nhé!
Bài 2:
a: Sửa đề: \(-x^2+4x-y^2-12y+47\)
\(=-\left(x^2-4x+y^2+12y-47\right)\)
\(=-\left(x^2-4x+4+y^2+12y+36-87\right)\)
\(=-\left(x-2\right)^2-\left(y+6\right)^2+87< =87\)
Dấu '=' xảy ra khi x=2 và y=-6
b: \(-x^2-x-y^2-3y+13\)
\(=-\left(x^2+x+y^2+3y-13\right)\)
\(=-\left(x^2+x+\dfrac{1}{4}+y^2+3y+\dfrac{9}{4}-\dfrac{91}{5}\right)\)
\(=-\left(x+\dfrac{1}{2}\right)^2-\left(y+\dfrac{3}{2}\right)^2+\dfrac{91}{5}\le\dfrac{91}{5}\)
Dấu '=' xảy ra khi x=-1/2 và y=-3/2
\(C=2\left(x-\frac{5}{4}\right)^2+\frac{7}{8}\ge\frac{7}{8}\Rightarrow C_{min}=\frac{7}{8}\)
\(D=\left(x^2+4xy+4y^2\right)+\left(y^2+y+\frac{1}{4}\right)+\frac{8083}{4}\)
\(D=\left(x+2y\right)^2+\left(y+\frac{1}{2}\right)^2+\frac{8083}{4}\ge\frac{8083}{4}\)
\(E=\frac{1}{2}\left(4x^2+y^2+\frac{9}{4}-4xy-6x+3y\right)+\frac{1}{2}\left(y^2+y+\frac{1}{4}\right)+\frac{15}{4}\)
\(E=\frac{1}{2}\left(2x-y-\frac{3}{2}\right)^2+\frac{1}{2}\left(y+\frac{1}{2}\right)^2+\frac{15}{4}\ge\frac{15}{4}\)
\(A=-\left(x-2\right)^2+11\le11\)
\(B=-\left(x+\frac{1}{2}\right)^2+\frac{9}{4}\le\frac{9}{4}\)
\(C=-\left(x-3y\right)^2-\left(y-2\right)^2+11\le11\)
nhìn đề bài rắc rối thế