\(2017-\frac{2-4x}{x^2+2}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2019

\(P=2017-\frac{2-4x}{x^2+2}=2018-1-\frac{2-4x}{x^2+2}=2018-\left(\frac{x^2-4x+4}{x^2+2}\right)=2018-\frac{\left(x-2\right)^2}{x^2+2}\le2018\)

"=" xảy ra <=> x =2 

Vậy GTLN của P = 2018 <=> x =2.

10 tháng 7 2018

1.(√x -2)^2 ≥ 0 --> x -4√x +4 ≥ 0 --> x+16 ≥ 12 +4√x --> (x+16)/(3+√x) ≥4 
--> Pmin=4 khi x=4

4 tháng 5 2021

2. Đặt \(\sqrt{x^2-4x+5}=t\ge1\)1

=> M=2x2-8x+\(\sqrt{x^2-4x+5}\)+6=2(t2-5)+t+6

<=> M=2t2+t-4\(\ge\)2.12+1-4=-1

Mmin=-1 khi t=1 hay x=2

6 tháng 12 2015

2) ĐKXĐ:  \(1\le x\le5\)

\(B^2=\left(\sqrt{x-1}+\sqrt{5-x}\right)^2\le\left(1^2+1^2\right)\left(x-1+5-x\right)=8\Rightarrow B\le2\sqrt{2}\)

Xảy ra đẳng thức khi và chỉ khi x = 3

14 tháng 12 2016

Q lớn nhất =>\(A=\sqrt{x^2-4x+5}Phai.NN\)

\(A=\sqrt{x^2-4x+2^2+1}=\sqrt{\left(x-2\right)^2+1}\ge1\)

\(Q=\frac{1}{A}\le1\) dẳng thức khi x=2