K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2016

\(\sqrt{9-5x^2}\le3\)

\(\Rightarrow P\le3\)

Dấu = khi x=0

Vậy Pmax=3 <=>x=0

22 tháng 7 2016

\(P=\sqrt{9-5x^2}\)           ĐKXĐ:\(\frac{-3\sqrt{5}}{5}\le x\le\frac{3\sqrt{5}}{5}\)

Mà \(5x^2\ge0\)\("="\Leftrightarrow x=0\)

\(\Leftrightarrow-5x^2\le0\)\("="x=0\)

\(\Leftrightarrow9-5x^2\le9\)\("="\Leftrightarrow x=0\)

\(\Leftrightarrow\sqrt{9-5x^2}\le\sqrt{9}=3\)\("="\Leftrightarrow x=0\)

\(\Rightarrow P\le3\)\("="\Leftrightarrow x=0\)

Vậy GTLN của P là bằng 3 tại x=0

30 tháng 10 2021

các bn giải giúp mk với các bn ơiiiiiii

26 tháng 12 2021

hỏi 1 tháng chưa ai trả lời ._.

 

15 tháng 7 2016

\(M=\sqrt{x-2}+\sqrt{4-x}\Rightarrow M^2=x-2+4-x+2\sqrt{\left(x-2\right)\left(4-x\right)}=2+2\sqrt{\left(x-2\right)\left(4-x\right)}\)

Áp dụng bđt Cauchy, ta có ; \(2\sqrt{\left(x-2\right)\left(4-x\right)}\le x-2+4-x=2\)

\(\Rightarrow M^2\le2+2=4\Rightarrow M\le2\)

Vậy Max M = 2 \(\Leftrightarrow\hept{\begin{cases}2\le x\le4\\x-2=4-x\end{cases}\Leftrightarrow}x=3\)

15 tháng 7 2016

GTLN của M=2 tại x=3

15 tháng 7 2016

đặt A=

\(\sqrt{x^2-6x+13}=\sqrt{x^2-2.x.3+3^2-3^2+13}=\sqrt{\left(x-3\right)^2+4}>=2\)

Min A=2<=> x-3=0<=> x=3

3 tháng 9 2019

\(\Leftrightarrow\sqrt{\left(\sqrt{x}+1\right)^2}=2\Leftrightarrow\sqrt{x}+1=2\Leftrightarrow\sqrt{x}=1\Leftrightarrow x=1\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x}-2\right)^2}=3\Leftrightarrow\sqrt{x}-2=3\Leftrightarrow\sqrt{x}=5\Leftrightarrow x=25\) 

\(\sqrt{x-2\sqrt{x-1}}=\sqrt{x-1-2\sqrt{x-1}+1}=\sqrt{\left(\sqrt{x-1}-1\right)^2}=\sqrt{x-1}-1=2\) 

\(\Leftrightarrow x=10\)

3 tháng 9 2019

 ĐKXĐ tự tìm\(b,\sqrt{x-4\sqrt{x}+4}=3\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x}-2\right)^2}=3\)

\(\Leftrightarrow\sqrt{x}-2=3\)

\(\Leftrightarrow\sqrt{x}=5\)

\(\Rightarrow x=5^2=25\)

3 tháng 9 2019

\(\sqrt{3x-2}+\sqrt{3+x}=\sqrt{5x+4}\)

\(\left(\sqrt{3x-2}+\sqrt{3+x}\right)^2=\left(\sqrt{5x+4}\right)^2\)

\(3x-2+3+x+2\sqrt{\left(2x-2\right)\left(3+x\right)}=5x+4\)

\(4x+3+2\sqrt{6x+2x^2-6-2x}=5x+4\)

\(2\sqrt{2x^2+4x-6}=5x+4-4x-3\)

\(2\sqrt{2x^2+4x-6}=x+1\)

\(\left(2\sqrt{2x^2+4x-6}\right)^2=\left(x+1\right)^2\)

\(4\left(2x^2+4x-6\right)=x^2+2x+1\)

\(8x^2+16x-24=x^2+2x+1\)

\(8x^2+16x-24-x^2-2x-1=0\)

\(7x^2+14x-25=0\)

\(x_1=\frac{-7+4\sqrt{14}}{7}\)

\(x_2=\frac{-7-4\sqrt{14}}{7}\)

3 tháng 9 2019

Đkxđ đâu bạn

5 tháng 9 2019

ĐKXĐ : \(\left\{{}\begin{matrix}3x-2\ge0\\3+x\ge0\\5x+4\ge0\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x\ge\frac{2}{3}\\x\ge-3\\x\ge-\frac{4}{5}\end{matrix}\right.\)

=> \(x\ge\frac{2}{3}\) (1)

Ta có : \(\sqrt{3x-2}+\sqrt{3+x}=\sqrt{5x+4}\)

<=> \(\left(\sqrt{3x-2}+\sqrt{3+x}\right)^2=\left(\sqrt{5x+4}\right)^2\)

<=> \(\left(3x-2\right)+2\sqrt{\left(3x-2\right)\left(3+x\right)}+\left(3+x\right)=5x+4\)

<=> \(3x-2+2\sqrt{\left(3x-2\right)\left(3+x\right)}+3+x=5x+4\)

<=> \(2\sqrt{\left(3x-2\right)\left(3+x\right)}=5x+4+2-3-x-3x\)

<=> \(2\sqrt{\left(3x-2\right)\left(3+x\right)}=x+3\)

<=> \(\sqrt{\left(3x-2\right)\left(3+x\right)}=\frac{x+3}{2}\)

ĐKXĐ : \(\frac{x+3}{2}\ge0\)

=> \(x+3\ge0\)

=> \(x\ge-3\) (2)

Từ (1) và (2)

=> \(x\ge\frac{2}{3}\)

<=> \(\left(\sqrt{\left(3x-2\right)\left(3+x\right)}\right)^2=\left(\frac{x+3}{2}\right)^2\)

<=> \(\left(3x-2\right)\left(3+x\right)=\frac{\left(x+3\right)^2}{4}\)

<=> \(9x-6+3x^2-2x=\frac{x^2+6x+9}{4}\)

<=> \(\frac{4\left(9x-6+3x^2-2x\right)}{4}=\frac{x^2+6x+9}{4}\)

<=> \(4\left(9x-6+3x^2-2x\right)=x^2+6x+9\)

<=> \(36x-24+12x^2-8x=x^2+6x+9\)

<=> \(36x-24+12x^2-8x-x^2-6x-9=0\)

<=> \(22x-33+11x^2=0\)

<=> \(11x^2+33x-11x-33=0\)

<=> \(11x\left(x-1\right)+33\left(x-1\right)=0\)

<=> \(\left(11x+33\right)\left(x-1\right)=0\)

<=> \(\left\{{}\begin{matrix}11x+33=0\\x-1=0\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x=-3\left(L\right)\\x=1\left(TM\right)\end{matrix}\right.\)

Vậy phương trình trên có nghiệm là x = 1 .