K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2016

Ta có: P= \(5x^2+4xy+y^2+6x+2y+2016\)

          =  \(\left(4x^2+y^2+1+4x+2y+4xy\right)+\left(x^2+2x+1\right)+2014\)

         =  \(\left(2x+y+1\right)^2+\left(x+1\right)^2+2014\ge2014\)

(Vì \(\left(2x+y+1\right)^2\ge0;\left(x+1\right)^2\ge0\))

Dấu = khi \(\hept{\begin{cases}2x+y+1=0\\x+1=0\end{cases}< =>}\hept{\begin{cases}y=1\\x=-1\end{cases}}\)

Vậy min P =2014 khi x=-1; y=1

13 tháng 1 2019

Pt đã cho đưa về dạng

(2x+y)^2 + 2(2x+y) + 1 + x^2 - 4 = 0

<=> (2x+y+1)^2 + x^2 = 4

Mà 4 = 0 + 2^2 = 0 + (-2)^2

Xét các TH là ra 

(2x+y)^2 + 2(2x+y) + 1 + x^2 - 4 = 0

<=> (2x+y+1)^2 + x^2 = 4

Mà 4 = 0 + 2^2 = 0 + (-2)^2

Xét các TH là ra 

10 tháng 9 2017

\(a,A=3x^2-5x+1\)

\(=3\left(x^2-\dfrac{5}{3}x+\dfrac{25}{36}\right)-\dfrac{13}{12}\)

\(=3\left(x-\dfrac{5}{6}\right)^2-\dfrac{13}{12}\)

Với mọi giá trị của x ta có:

\(\left(x-\dfrac{5}{6}\right)^2\ge0\)

\(\Rightarrow3\left(x-\dfrac{5}{6}\right)^2-\dfrac{13}{12}\ge-\dfrac{13}{12}\)

Vậy Min \(A=-\dfrac{13}{12}\)

Để \(A=-\dfrac{13}{12}\) thì \(x-\dfrac{5}{6}=0\Rightarrow x=\dfrac{5}{6}\)

\(b,B=2x^2+5y^2-4x+2y+4xy+2017\)

\(=\left(2x^2-4x+4xy\right)+5y^2+2y+2017\)

\(=2\left(x^2-2x+2xy\right)+5y^2+2y+2017\)

\(=2\left[x^2-2x\left(1-y\right)+\left(1-y\right)^2\right]+5y^2+2y+2017+2\left(1-y\right)^2\)\(=2\left(x-1+y\right)^2+5y^2+2y+2017-2\left(1-y\right)^2\)

\(=2\left(x+y-1\right)^2+5y^2+2y+2017-2+4y-2y^2\)\(=2\left(x+y-1\right)^2+3y^2+6y+2015\)

\(=2\left(x+y-1\right)^2+3\left(y^2+2y+1\right)+2012\)

\(=2\left(x+y-1\right)^2+3\left(y+1\right)^2+2012\)

Với mọi giá trị của x ta có:

\(2\left(x+y-1\right)^2\ge0;3\left(y+1\right)^2\ge0\)

\(\Rightarrow2\left(x+y-1\right)^2+3\left(y+1\right)^2+2012\ge2012\) Vậy : Min B = 2012

Để B = 2012 thì \(\left\{{}\begin{matrix}x+y-1=0\\y+1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\\y=-1\end{matrix}\right.\)