K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 9 2021

Bài 2:

a) \(A=x^2+6\ge6>0\forall x\in R\)

b) \(B=\left(5-x\right)\left(x+8\right)>0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}5-x>0\\x+8>0\end{matrix}\right.\\\left\{{}\begin{matrix}5-x< 0\\x+8< 0\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}5>x\ge-8\left(nhận\right)\\-8>x>5\left(VLý\right)\end{matrix}\right.\)

 

12 tháng 9 2018

k mk đi

ai k mk

mk k lại

thanks

23 tháng 7 2018

a) Gọi\(A=20+\left(50-x\right)^4\)

\(\left(50-x\right)^4\ge0\)

\(\Rightarrow A\ge20\)

Dấu "=" xảy ra khi 50 - x = 0 <=> x = 50

Vậy Min A = 20 <=> x = 50

b) Gọi \(B=\left|80-x\right|-20\)

\(\left|80-x\right|\ge0\)

\(\Rightarrow B\ge0-20=-20\)

Dấu "=" xảy ra khi x = 80

Vậy Min B = -20 <=> x = 80

c) Gọi \(C=\left|47+x\right|-18\)

\(\left|47+x\right|\ge0\)

\(\Rightarrow C\ge-18\)

Dấu "=" xảy ra khi x = -47

Vậy MinC = -18 <=> x = -47

23 tháng 7 2018

a) Vì \(\left(50-x\right)^4\ge0\left(\forall x\right)\Rightarrow20+\left(50-x\right)^4\ge20\)

Dấu "=" xảy ra \(\Leftrightarrow\left(50-x\right)^4=0\Leftrightarrow50-x=0\Leftrightarrow x=50\)

Vậy GTNN của biểu thức bằng 20 khi và chỉ khi x = 50

b) Vì \(\left|80-x\right|\ge0\left(\forall x\right)\Rightarrow\left|80-x\right|-20\ge-20\)

Dấu "=" xảy ra \(\Leftrightarrow\left|80-x\right|=0\Leftrightarrow80-x=0\Leftrightarrow x=80\)

Vậy GTNN của biểu thức bằng -20 khi và chỉ khi x = 80

c) Vì \(\left|47+x\right|\ge0\left(\forall x\right)\Rightarrow\left|47+x\right|-18\ge-18\)

Dấu "=" xảy ra \(\Leftrightarrow\left|47+x\right|=0\Leftrightarrow47+x=0\Leftrightarrow x=-47\)

Vậy GTNN của biểu thức bằng -18 khi và chỉ khi x = -47

16 tháng 3 2022

\(A=\left(2x-50\right)^{10}-12\ge-12\)

Dấu ''='' xảy ra khi x = 25 

\(B=-\left|3x-2\right|+18\le18\)

Dấu ''='' xảy ra khi x = 2/3 

a) \(A=2\left|x-3\right|+\left|2x-10\right|=\left|2x-3\right|+\left|10-2x\right|\ge\left|2x-3+10-2x\right|=7\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\left(2x-3\right)\left(10-2x\right)\ge0\)\(\Leftrightarrow\)\(\frac{3}{2}\le x\le5\)

b) \(B\left|\frac{1}{4}x-8\right|+\left|2-\frac{1}{4}x\right|\ge\left|\frac{1}{4}x-8+2-\frac{1}{4}x\right|=6\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\left(\frac{1}{4}x-8\right)\left(2-\frac{1}{4}x\right)\ge0\)\(\Leftrightarrow\)\(8\le x\le32\)

30 tháng 1 2021

Ta có: \(A=\frac{7x-8}{2x-3}=\frac{1}{2}.\frac{14x-16}{2x-3}=\frac{1}{2}.\frac{14x-21+5}{2x-3}=\frac{1}{2}.\frac{7\left(2x-3\right)+5}{2x-3}\)\(=\frac{1}{2}\left(7+\frac{5}{2x-3}\right)\)

Để A đạt GTLN thì \(\frac{1}{2}\left(7+\frac{5}{2x-3}\right)\) lớn nhất

\(\Rightarrow7+\frac{5}{2x-3}\) lớn nhất

\(\Rightarrow\frac{5}{2x-3}\) lớn nhất

\(\Rightarrow2x-3\) nhỏ nhất hay x nhỏ nhất và x > 0

Vì \(x\inℤ\) nên \(2x-3\inƯ\left(5\right)=\left\{1;5\right\}\)

\(\Rightarrow2x\in\left\{4;8\right\}\)

\(\Rightarrow x\in\left\{2;4\right\}\)

Mà x nhỏ nhất và x > 0 nên x = 2

Thay x = 2 vào A ta được: \(A=\frac{1}{2}.\left(7+\frac{5}{2.2-3}\right)=\frac{1}{2}.12=6\)

Vậy MaxA = 6 tại x = 2.

17 tháng 3 2019

A;B;C dùng t/c \(A^2\ge0\) và \(\left|A\right|\ge0\) là ra.

 Mình giúp bài D thôi nhé: Thêm đk x thuộc Z.Chứ không thì không biết đâu mà lần.

\(D=\frac{x+3}{x-4}=1+\frac{7}{x-4}\).D lớn nhất khi x - 4 là số nguyên dương nhỏ nhất

Suy ra x - 4 = 1 tức là x = 5

Suy ra \(D\le1+\frac{7}{5-4}=1+7=8\)

Dấu "=' xảy ra khi x = 5

Vậy....