Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
g) \(\left(2x-1\right)^2-\left(2x+4\right)^2=0\)
\(\Leftrightarrow\left(2x-1+2x+4\right)\left(2x-1-2x-4\right)=0\)
\(\Leftrightarrow-5\left(4x+3\right)=0\)
\(\Leftrightarrow4x+3=0\)
\(\Leftrightarrow4x=-3\)
\(\Leftrightarrow x=\frac{-3}{4}\)
Vậy tập nghiệm của pt là \(S=\left\{\frac{-3}{4}\right\}\)
h) \(\left(2x-3\right)\left(3x+1\right)-x\left(6x+10\right)=30\)
\(\Leftrightarrow3x\left(2x-3\right)+\left(2x-3\right)-6x^2-10x=30\)
\(\Leftrightarrow6x^2-9x+2x-3-6x^2-10x=30\)
\(\Leftrightarrow-9x+2x-3-10x=30\)
\(\Leftrightarrow-17x-3=30\)
\(\Leftrightarrow-17x=33\)
\(\Leftrightarrow x=\frac{-33}{17}\)
Vậy tập nghiệm của pt là \(S=\left\{\frac{-33}{17}\right\}\)
\(a.\left(3x+2\right)\left(x^2-1\right)=\left(9x^2-4\right)\left(x+1\right)\\ \left(3x+2\right)\left(x^2-1\right)-\left(9x^2-4\right)\left(x+1\right)=0\\ \left(3x+2\right)\left(x+1\right)\left(x-1\right)-\left(3x-2\right)\left(3x+2\right)\left(x+1\right)=0\\ \left(3x+2\right)\left(x+1\right)\left[\left(x-1\right)-\left(3x-2\right)\right]=0\\ \left(3x+2\right)\left(x+1\right)\left(x-1-3x+2\right)=0\\ \left(3x+2\right)\left(x+1\right)\left(1-2x\right)=0\\ \left[{}\begin{matrix}3x+2=0\\x+1=0\\1-2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-2}{3}\\x=-1\\x=\frac{1}{2}\end{matrix}\right.\)
\(b.x\left(x+3\right)\left(x-3\right)-\left(x+2\right)\left(x^2-2x+4\right)=0\\ x\left(x^2-9\right)-\left(x^3+8\right)=0\\ x^3-9x-x^3-8=0\\ -9x-8=0\\ -9x=8\\ x=\frac{-8}{9}\)
\(c.2x\left(x-3\right)+5\left(x-3\right)=0\\ \left(x-3\right)\left(2x+5\right)=0\\ \left[{}\begin{matrix}x-3=0\\2x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\frac{-5}{2}\end{matrix}\right.\)
\(d.\left(3x-1\right)\left(x^2+2\right)=\left(3x-1\right)\left(7x-10\right)\\ \left(3x-1\right)\left(x^2+2\right)-\left(3x-1\right)\left(7x-10\right)=0\\ \left(3x-1\right)\left[\left(x^2+2\right)-\left(7x-10\right)\right]=0\\ \left(3x-1\right)\left(x^2+2-7x+10\right)=0\\ \left(3x-1\right)\left(x^2-7x+12\right)=0\\ \left(3x-1\right)\left(x^2-4x-3x+12\right)=0\\ \left(3x-1\right)\left[\left(x^2-4x\right)+\left(-3x+12\right)\right]=0\\ \left(3x-1\right)\left[x\left(x-4\right)-3\left(x-4\right)\right]=0\\ \left(3x-1\right)\left(x-4\right)\left(x-3\right)=0\\ \left[{}\begin{matrix}3x-1=0\\x-4=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{3}\\x=4\\x=3\end{matrix}\right.\)
\(e.\left(x+2\right)\left(3-4x\right)=x^2+4x+4\\ \left(x+2\right)\left(3-4x\right)=\left(x+2\right)^2\\ \left(x+2\right)\left(3-4x\right)-\left(x+2\right)^2=0\\ \left(x+2\right)\left[\left(3-4x\right)-\left(x+2\right)\right]=0\\ \left(x+2\right)\left(3-4x-x-2\right)=0\\ \left(x+2\right)\left(1-5x\right)=0\left[{}\begin{matrix}x+2=0\\1-5x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\frac{1}{5}\end{matrix}\right.\)
\(f.x\left(2x-7\right)-4x+14=0\\ x\left(2x-7\right)-2\left(2x-7\right)=0\\ \left(2x-7\right)\left(x-2\right)=0\\ \left[{}\begin{matrix}2x-7=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{7}{2}\\x=2\end{matrix}\right.\)
\(g.3x-15=2x\left(x-5\right)\\ 3\left(x-5\right)=2x\left(x-5\right)\\ 3\left(x-5\right)-2x\left(x-5\right)=0\\ \left(x-5\right)\left(3-2x\right)=0\\ \left[{}\begin{matrix}x-5=0\\3-2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=\frac{3}{2}\end{matrix}\right.\)
\(h.\left(2x+1\right)\left(3x-2\right)=\left(5x-8\right)\left(2x+1\right)\\ \left(2x+1\right)\left(3x-2\right)-\left(5x-8\right)\left(2x+1\right)=0\\ \left(2x+1\right)\left[\left(3x-2\right)-\left(5x-8\right)\right]=0\\ \left(2x+1\right)\left(3x-2-5x+8\right)=0\\ \left(2x+1\right)\left(6-2x\right)=0\\ \left[{}\begin{matrix}2x+1=0\\6-2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-1}{2}\\x=3\end{matrix}\right.\)
\(A=49x^2-28x+25\)
\(A=\left(7x\right)^2-2.7x.2+4-4+25\)
\(A=\left(7x-2\right)^2+21\)
Vì \(\left(7x-2\right)^2\ge0\) với mọi x
\(\Rightarrow\left(7x-2\right)^2+21\ge21\) với mọi x
\(\Rightarrow Amin=21\Leftrightarrow7x-2=0\)
\(\Rightarrow7x=2\)
\(\Rightarrow x=\dfrac{2}{7}\)
Vậy \(Amin=21\Leftrightarrow x=\dfrac{2}{7}\)
\(B=8x^2-28x-1\)
\(B=2\left(4x^2-14x-\dfrac{1}{2}\right)\)
\(B=2\left[\left(2x\right)^2-2.2x.\dfrac{7}{2}+\left(\dfrac{7}{2}\right)^2-\left(\dfrac{7}{2}\right)^2-\dfrac{1}{2}\right]\)
\(B=2\left[\left(2x\right)^2-2.2x.\dfrac{7}{2}+\left(\dfrac{7}{2}\right)^2-\dfrac{51}{4}\right]\)
\(B=2\left(2x-\dfrac{7}{2}\right)^2-\dfrac{51}{2}\)
Vì \(2\left(2x-\dfrac{7}{2}\right)^2\ge0\) với mọi x
\(\Rightarrow2\left(2x-\dfrac{7}{2}\right)^2-\dfrac{51}{2}\ge-\dfrac{51}{2}\)
\(\Rightarrow Bmin=-\dfrac{51}{2}\Leftrightarrow2x-\dfrac{7}{2}=0\)
\(\Rightarrow2x=\dfrac{7}{2}\)
\(\Rightarrow x=\dfrac{7}{4}\)
Vậy \(Bmin=-\dfrac{51}{2}\Leftrightarrow x=\dfrac{7}{4}\)
\(C=\left(2x^2+5\right)^2+10\)
Vì \(\left(2x^2+5\right)^2\ge0\) với mọi x
\(\Rightarrow\left(2x^2+5\right)^2+10\ge10\) với mọi x
\(\Rightarrow Cmin=10\Leftrightarrow2x^2+5=0\)
\(\Rightarrow2x^2=-5\)
\(\Rightarrow x^2=-\dfrac{5}{2}\)
\(\Rightarrow\) Không tồn tại x thỏa mãn
Vậy C không có giá trị nhỏ nhất
P/s: Câu c mình làm không có chắc nha, thấy nó sao sao ấy, không biết có sai đề không?
\(D=3x^2-8x+7\)
\(D=3\left(x^2-\dfrac{8}{3}x+\dfrac{7}{3}\right)\)
\(D=3\left(x^2-2.x.\dfrac{4}{3}+\dfrac{16}{9}-\dfrac{16}{9}+\dfrac{7}{3}\right)\)
\(D=3\left(x^2-2.x.\dfrac{4}{3}+\dfrac{16}{9}+\dfrac{5}{9}\right)\)
\(D=3\left(x-\dfrac{4}{3}\right)^2+\dfrac{5}{3}\)
Vì \(3\left(x-\dfrac{4}{3}\right)^2\ge0\) với mọi x
\(\Rightarrow3\left(x-\dfrac{4}{3}\right)^2+\dfrac{5}{3}\ge\dfrac{5}{3}\)
\(\Rightarrow Dmin=\dfrac{5}{3}\Leftrightarrow x-\dfrac{4}{3}=0\)
\(\Rightarrow x=\dfrac{4}{3}\)
Vậy \(Dmin=\dfrac{5}{3}\Leftrightarrow x=\dfrac{4}{3}\)
\(E=x^4-2x^2+12\)
\(E=\left(x^2\right)^2-2x^2+1+11\)
\(E=\left(x^2-1\right)^2+11\)
Vì \(\left(x^2-1\right)^2\ge0\) với mọi x
\(\Rightarrow\left(x^2-1\right)^2+11\ge11\) với mọi x
\(\Rightarrow Emin=11\Leftrightarrow x^2-1=0\)
\(\Rightarrow x^2=1\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
Vậy \(Emin=11\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
\(F=4x^2+15x+2\)
\(F=\left(2x\right)^2+2.2x.\dfrac{15}{4}+\left(\dfrac{15}{4}\right)^2-\left(\dfrac{15}{4}\right)^2+2\)
\(F=\left(2x+\dfrac{15}{4}\right)^2-\dfrac{225}{16}+\dfrac{32}{16}\)
\(F=\left(2x+\dfrac{15}{4}\right)^2-\dfrac{193}{16}\)
Vì \(\left(2x+\dfrac{15}{4}\right)^2\ge0\) với mọi x
\(\Rightarrow\left(2x+\dfrac{15}{4}\right)^2-\dfrac{193}{16}\ge-\dfrac{193}{16}\)
\(\Rightarrow Fmin=-\dfrac{193}{16}\Leftrightarrow2x+\dfrac{15}{4}=0\)
\(\Rightarrow2x=-\dfrac{15}{4}\)
\(\Rightarrow x=-\dfrac{15}{4}.\dfrac{1}{2}\)
\(\Rightarrow x=-\dfrac{15}{8}\)
Vậy \(Fmin=-\dfrac{193}{16}\Leftrightarrow x=-\dfrac{15}{8}\)
\(H=\left(x-1\right)\left(x+5\right)\left(x^2+4x+5\right)\)
\(H=\left(x^2+4x-5\right)\left(x^2+4x+5\right)\)
\(H=\left(x^2+4x\right)^2-5^2\)
\(H=\left(x^2+4x\right)^2-25\)
Vì \(\left(x^2+4x\right)^2\ge0\)
\(\Rightarrow\left(x^2+4x\right)^2-25\ge-25\) với mọi x
\(\Rightarrow Hmin=-25\Leftrightarrow x^2+4x=0\)
\(\Rightarrow x\left(x+4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=-4\end{matrix}\right.\)
Vậy \(Hmin=-25\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-4\end{matrix}\right.\)
\(I=\left(x^6+6\right)^2\)
Vì \(\left(x^6+6\right)^2\ge0\)
\(\Rightarrow Imin=0\Leftrightarrow x^6+6=0\)
\(\Rightarrow\left(x^3\right)^2=-6\)
\(\Rightarrow\) Không tồn tại x
Vậy I không có giá trị nhỏ nhất
\(A=49x^2-28x+25=\left(49x^2-28x+1\right)+24=\left(7x-1\right)^2+24\ge24\)
Vậy GTNN của A là 24 khi x = \(\dfrac{1}{7}\)
\(B=8x^2-28x-1=8\left(x^2-\dfrac{7}{2}x+\dfrac{49}{16}\right)-\dfrac{51}{2}=8\left(x-\dfrac{7}{4}\right)^2-\dfrac{51}{2}\ge-\dfrac{51}{2}\)
Vậy GTNN của B là \(-\dfrac{51}{2}\) khi x = \(\dfrac{7}{4}\)
\(C=\left(2x^2+5\right)^2+10=4x^4+20x^2+35\ge35\)
Vậy GTNN của C là 35 khi x = 0
\(D=3x^2-8x+7=3\left(x^2-\dfrac{8}{3}x+\dfrac{16}{9}\right)+\dfrac{5}{3}=3\left(x-\dfrac{4}{3}\right)^2+\dfrac{5}{3}\ge\dfrac{5}{3}\)
Vậy GTNN của D là \(\dfrac{5}{3}\) khi x = \(\dfrac{4}{3}\)
\(E=x^4-2x^2+12=\left(x^4-2x^2+1\right)+11=\left(x^2-1\right)^2+11\ge11\)
Vậy GTNN của E là 11 khi x = 1 hoặc x = -1
\(F=4x^2+15x+2=\left(4x^2+15x+\dfrac{225}{16}\right)-\dfrac{193}{16}=\left(2x+\dfrac{15}{4}\right)^2-\dfrac{193}{16}\ge-\dfrac{193}{16}\)
Vậy GTNN của F là \(-\dfrac{193}{16}\) khi x = \(-\dfrac{15}{8}\)
\(G=8\left(a+2\right)^3-\left(2a+1\right)^3\)
\(G=36a^2+90a+63\)
\(G=9\left(4a^2+10a+7\right)\)
\(G=9\left(4a^2+10a+\dfrac{25}{4}\right)+\dfrac{27}{4}\)
\(G=9\left(2a+\dfrac{5}{2}\right)^2+\dfrac{27}{4}\ge\dfrac{27}{4}\)
Vậy GTNN của G là \(\dfrac{27}{4}\) khi x = \(-\dfrac{5}{4}\)
\(H=\left(x-1\right)\left(x+5\right)\left(x^2+4x+5\right)\)
\(H=x^4+8x^3+16x^2-25\)
\(H=\left(x^2+4x\right)^2-25\ge-25\)
Vậy GTNN của H là -25 khi x = -4 hoặc x = 0
\(I=\left(x^6+6\right)^2=x^{12}+12x^6+36\ge36\)
Vậy GTNN của I là 36 khi x = 0
1,=\(x^2-3x-2x^2+6x=-x^2+3x\)
2,=\(3x^2-x-5+15x=3x^2+14x-5\)
3,=\(5x+15-6x^2-6x=-6x^2-x+15\)
4,=\(4x^2+12x-x-3=4x^2+11x-3\)
5: =>(x+5)^3=0
=>x+5=0
=>x=-5
6: =>(2x-3)^2=0
=>2x-3=0
=>x=3/2
7: =>(x-6)(x-10)=0
=>x=10 hoặc x=6
8: \(\Leftrightarrow x^3-12x^2+48x-64=0\)
=>(x-4)^3=0
=>x-4=0
=>x=4
\(a.\left(2x-3\right)\left(4x^2+6x+9\right)-\left(2x+3\right)\left(4x^2-6x+9\right)\\ =\left(2x\right)^3-3^3-\left[\left(2x\right)^3+3^3\right]\\ =8x^3-9-\left(8x^3+9\right)\\ =8x^3-9-8x^3-9=-18\)
\(b.\left(x+1\right)\left(x^2-x+1\right)-\left(x-1\right)\left(x^2+x+1\right)\\ =x^3+1-\left(x^3-1\right)\\ =x^3+1-x^3+1=2\)
\(c.\left(3x-1\right)\left(3x+1\right)-\left(3x-2\right)^2\\ =9x^2-1-\left(9x^2-12x+4\right)\\ =9x^2-1-9x^2+12x-4\\ =12x-5\)
\(d.\left(2x-3\right)^2-\left(2x+3\right)\left(2x-3\right)\\ =\left(2x-3\right)\cdot\left[\left(2x-3\right)-\left(2x+3\right)\right]\\ =\left(2x-3\right)\cdot\left(2x-3-2x-3\right)\\ =\left(2x-3\right)\cdot\left(-6\right)\\ =-12x\cdot18\)
\(e.\left(3x-4\right)^2-\left(2x+4\right)^2\\ =9x^2-24x+16-\left(4x^2+16x+16\right)\\ =9x^2-24x+16-4x^2-16x-16\\ =5x^2-40x\)
\(f.\left(3x-5\right)^3-\left(3x+5\right)^3\\ =27x^3-135x^2+225x-125-\left(27x^3+135x^2+225x+125\right)\\ =27x^3-135x^2+225x-125-27x^3-135x^2-225x-125\\ =-270x^2-250\)
\(g.\left(2x-1\right)^2-\left(3x-1\right)^2\\ =4x^2-4x+1-\left(9x^2-6x+1\right)\\ =4x^2-4x+1-9x^2+6x-1\\ =-5x^2+2x\)
\(h.\left(x-2y\right)\left(x^2+2xy+4y^2\right)+\left(x^3-6y^3\right)\\ =x^3-8y^3+x^3-6y^3\\ =2x^3-14y^3\)
Làm 2 câu các câu còn lại tương tự!
a, \(E=-x^2+4x-5=-\left(x^2-4x+5\right)\)
\(=-\left(x^2-2x-2x+4+1\right)=-\left[\left(x-2\right)^2+1\right]\)
Với mọi giá trị của \(x\in R\) ta có:
\(\left(x-2\right)^2+1\ge1\Rightarrow-\left[\left(x-2\right)^2+1\right]\le-1\)
Hay \(E\le-1\) với mọi giá trị của \(x\in R\).
Để \(E=-1\) thì \(-\left[\left(x-2\right)^2+1\right]=-1\)
\(\Rightarrow\left(x-2\right)^2=0\Rightarrow x=2\)
Vậy.............
b, \(F=-2x^2+2x-1=-\left(2x^2-2x+1\right)\)
\(=-\left(2x^2-x-x+\dfrac{1}{2}-\dfrac{3}{2}\right)\)
\(=-\left[\left(2x-1\right)^2-\dfrac{3}{2}\right]\)
Với mọi giá trị của \(x\in R\) ta có:
\(\left(2x-1\right)^2-\dfrac{3}{2}\ge-\dfrac{3}{2}\Rightarrow-\left[\left(2x-1\right)^2-\dfrac{3}{2}\right]\le\dfrac{3}{2}\)
Hay \(F\le\dfrac{3}{2}\) với mọi giá trị của \(x\in R\).
Để \(F=\dfrac{3}{2}\) thì \(-\left[\left(2x-1\right)^2-\dfrac{3}{2}\right]=\dfrac{3}{2}\)
\(\Rightarrow\left(2x-1\right)^2=0\Rightarrow x=\dfrac{1}{2}\)
Vậy.............
7, \(G=-4x^2+12x-7\)
\(=-4\left(x^2-3x+\dfrac{7}{4}\right)\)
\(=-4\left(x^2-\dfrac{3}{2}.x.2+\dfrac{9}{4}-\dfrac{2}{4}\right)\)
\(=-4\left(x-\dfrac{3}{2}\right)^2+2\le2\)
Dấu " = " khi \(-4\left(x-\dfrac{3}{2}\right)^2=0\Leftrightarrow x=\dfrac{3}{2}\)
Vậy \(MAX_G=2\) khi \(x=\dfrac{3}{2}\)
8, \(H=-2x^2+4x-15\)
\(=-2\left(x^2-2x+\dfrac{15}{2}\right)\)
\(=-2\left(x^2-2x+1+\dfrac{13}{2}\right)\)
\(=-2\left(x-1\right)^2-13\le-13\)
Dấu " = " khi \(-2\left(x-1\right)^2=0\Leftrightarrow x=1\)
Vậy \(MAX_H=-13\) khi x = 1
9, \(K=-x^4+2x^2-2\)
\(=-\left(x^2-2x^2+1+1\right)\)
\(=-\left(x^2-1\right)^2-1\le-1\)
Dấu " = " khi \(-\left(x^2-1\right)^2=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
Vậy \(MAX_K=-1\) khi \(x=\pm1\)
10, \(J=-3x^2+15x-9\)
\(=-3\left(x^2-\dfrac{5}{2}.x.2+\dfrac{10}{4}+\dfrac{2}{4}\right)\)
\(=-3\left(x-\dfrac{5}{2}\right)^2-\dfrac{3}{2}\le\dfrac{-3}{2}\)
Dấu " = " khi \(-3\left(x-\dfrac{5}{2}\right)^2=0\Leftrightarrow x=\dfrac{5}{2}\)
Vậy \(MAX_J=\dfrac{-3}{2}\) khi \(x=\dfrac{5}{2}\)