Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2\ge0\)(với mọi x,y)
=>\(C=\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2-10\ge-10\)
Dấu "=" xảy ra khi x=-2;y=1/5
Vậy GTNN của C là -10 tại x=-2;y=1/5
b)Ta có: \(\left(2x-3\right)^2\ge0\Rightarrow\left(2x-3\right)^2+5\ge0\Rightarrow D=\frac{4}{\left(2x-3\right)^2+5}\le\frac{4}{5}\)
Dấu "=" xảy ra khi: x=3/2
Vậy GTLN của D là : 4/5 tại x=3/2
\(\left(x^2-1\right)^2+9\ge9\)
nên \(A=\dfrac{4}{\left(x^2-1\right)^2+9}\le\dfrac{4}{9}\)
Dấu '=' xảy ra khi \(\left(x^2-1\right)^2=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)=0\)
=>x=1 hoặc x=-1
Câu hỏi của đào mai thu - Toán lớp 7 - Học toán với OnlineMath
eM THAM khảo nhé!
6 là số chẵn nên \(-\left[\frac{4}{9}x-\frac{2}{15}\right]^6\le0\)
=> B ≥ 3
=> GTLN của B = 3 khi x = 3/10
\(\left(x^2-1\right)^2\ge0\forall x\)
\(\Rightarrow\left(x^2-1\right)^2+9\ge0\forall x\)
Để A có GTLN thì (x2-1)2+9 phải nhỏ nhất
=>(x2-1)2+9=9
=>x=0
\(\Rightarrow A=\frac{4}{\left(0^2-1\right)^2+}=\frac{4}{10}=0,4\)
giá trị lớn nhất của biểu thức là: 0.4