Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
-x2 + 13x + 2012
= -(x2 - 13x) + 2012
= -( x2 - 2.\(\frac{13}{2}\).x + 169/4 - 169/4) + 2012
= -(x - \(\frac{13}{2}\))2 + 2012 + 169/4
= -(x - \(\frac{13}{2}\))2 + 2054\(\frac{1}{4}\)
Vi -(x - \(\frac{13}{2}\))2 <= 0
=> -(x - \(\frac{13}{2}\))2 + 2054\(\frac{1}{4}\)<= 2054\(\frac{1}{4}\)
Dau "=" xay ra <=> x - \(\frac{13}{2}\) = 0
<=> x = \(\frac{13}{2}\)
Vay GTLN cua bieu thuc la 2054\(\frac{1}{4}\)khi va chi khi x = \(\frac{13}{2}\)
Câu hỏi của Hồ Quế Ngân - Toán lớp 8 | Học trực tuyến
Câu 1:
Đầu tiên,ta chứng minh BĐT phụ (mang tên Cô si): \(x+y\ge2\sqrt{xy}\)
Thật vậy,điều cần c/m \(\Leftrightarrow x+y-2\sqrt{xy}\ge0\)
\(\Leftrightarrow\left(\sqrt{x}-\sqrt{y}\right)^2\ge0\) (luôn đúng)
Vậy BĐT phụ (Cô si) là đúng.
----------------------------------------------------------
Áp dụng BĐT Cô si,ta có: \(2\sqrt{x}=2\sqrt{1x}\le x+1\)
Do đó:
\(B=\frac{2\sqrt{x}}{x+1}\le\frac{x+1}{x+1}=1\)
Dấu "=" xảy ra \(\Leftrightarrow x=1\)
1/ Ta có : \(P\left(x\right)=-x^2+13x+2012=-\left(x-\frac{13}{2}\right)^2+\frac{8217}{4}\le\frac{8217}{4}\)
Dấu "=" xảy ra khi x = 13/2
Vậy Max P(x) = 8217/4 tại x = 13/2
2/ Ta có : \(x^3+3xy+y^3=x^3+3xy.1+y^3=x^3+y^3+3xy\left(x+y\right)=\left(x+y\right)^3=1\)
3/ \(a+b+c=0\Leftrightarrow\left(a+b+c\right)^2=0\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=0\)
\(\Leftrightarrow ab+bc+ac=-\frac{1}{2}\) \(\Leftrightarrow\left(ab+bc+ac\right)^2=\frac{1}{4}\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=\frac{1}{4}\)
\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2=\frac{1}{4}\)(vì a+b+c=0)
Ta có : \(a^2+b^2+c^2=1\Leftrightarrow\left(a^2+b^2+c^2\right)^2=1\Leftrightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=1\)
\(\Leftrightarrow a^4+b^4+c^4=1-2\left(a^2b^2+b^2c^2+c^2a^2\right)=1-\frac{2.1}{4}=\frac{1}{2}\)
\(A=x^2-20x+101\)
\(=x^2-20x+100+1\)
\(=\left(x-10\right)^2+1\)
\(\Rightarrow A_{min}=1\Leftrightarrow\left(x-10\right)^2=0\)
\(\Rightarrow x-10=0\)
\(\Rightarrow x=10\)
\(P\left(x\right)=-x^2+13x+2012\)
\(=-x^2+2.x.\frac{13}{2}-\frac{169}{4}+\frac{169}{4}+2012\)
\(=-\left(x-\frac{13}{2}\right)^2+\frac{8217}{4}\)
Vì \(-\left(x-\frac{13}{2}\right)^2\le0;\forall x\)
\(\Rightarrow-\left(x-\frac{13}{2}\right)^2+\frac{8217}{4}\le0+\frac{8217}{4};\forall x\)
Hay \(P\left(x\right)\le\frac{8217}{4};\forall x\)
Dấu "="xảy ra \(\Leftrightarrow\left(x-\frac{13}{2}\right)^2=0\)
\(\Leftrightarrow x=\frac{13}{2}\)
Vậy MAX \(P\left(x\right)=\frac{8217}{4}\)\(\Leftrightarrow x=\frac{13}{2}\)
\(P\left(x\right)=-x^2+13x+2012\)
\(P\left(x\right)=-x^2+13x-\frac{169}{4}+\frac{169}{4}+2012\)
\(P\left(x\right)=\left(-x-\frac{13}{2}\right)^2+\frac{8217}{4}\ge\frac{8217}{4}\)
Dấu '' = '' xảy ra
\(\Leftrightarrow-x-\frac{13}{2}=0\)
\(\Leftrightarrow-x=\frac{13}{2}\)
\(\Leftrightarrow x=\frac{-13}{2}\)
Vậy ...........
P/s : mình thấy có gì sai sai ở bài mình . Các bạn thấy thì nói nhé!