Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2) ĐKXĐ: \(1\le x\le5\)
\(B^2=\left(\sqrt{x-1}+\sqrt{5-x}\right)^2\le\left(1^2+1^2\right)\left(x-1+5-x\right)=8\Rightarrow B\le2\sqrt{2}\)
Xảy ra đẳng thức khi và chỉ khi x = 3
a) Tìm GTNN của biểu thức : |x - 2015| + |x - 2016|.
b) Tìm GTLN của biểu thức : \(\sqrt{8+2x-x^2}\).
a)=**** 100%
b)\(\sqrt{2^3+1}\) phần b ko bít đúng ko nhưng phần a đúng ko 100%
\(x\ge2017\)
\(A=\frac{\sqrt{x-2016}}{x-2016+2017}+\frac{\sqrt{x-2017}}{x-2017+2016}=\frac{1}{\sqrt{x-2016}+\frac{2017}{\sqrt{x-2016}}}+\frac{1}{\sqrt{x-2017}+\frac{2016}{\sqrt{x-2017}}}\)
\(A\le\frac{1}{2\sqrt{2017}}+\frac{1}{2\sqrt{2016}}\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x-2016=2017\\x-2017=2016\end{matrix}\right.\) \(\Rightarrow x=4033\)
a/ Ta có
P = \(\frac{1+\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\) - \(\frac{2+x}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\) - \(\frac{1+\sqrt{x}}{x+\sqrt{x}+1}\)
= \(\frac{-\sqrt{x}}{1+\sqrt{x}+x}\)