Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=x^2-6x+y^2-2y+12=\left(x^2-6x+9\right)\left(y^2-2y+1\right)+2\)
\(B=\left(x-3\right)^2+\left(y-1\right)^2+2\text{ }\)
Ta thấy B lớn hơn hoặc bằng 2 suy ra GTNN của B là 2
Dấu = xảy ra khi x=3; y=1
\(C=2x^2-6x=\left(2x^2-6x+4,5\right)-4,5=2\left(x^2-3x+2,25\right)-4,5\)
\(C=2\left(x-1,5\right)^2-4,5\)
Ta thấy C luôn luôn lớn hơn hoặc bằng -4,5 nên GTNN của C là -4,5
Dấu = xảy ra khi x=1,5
Tối mình full cho còn giờ mình đi đá bóng đây
1) \(D=\frac{2016}{-4x^2+4x-5}\). Để D đạt giá trị nhỏ nhất suy ra \(-4x^2+4x-5\)đạt giá trị lớn nhất.
Ta có \(-4x^2+4x-5=-4x^2+4x-1-4=\left(-4x^2+4x-1\right)-4\)
\(-4\left(x^2-x+\frac{1}{4}\right)-4=-4\left(x-\frac{1}{2}\right)^2-4\).
Ta Thấy:\(-4\left(x-\frac{1}{2}\right)^2\) bé hơn hoặc bằng 0 nên \(-4\left(x-\frac{1}{2}\right)^2-4\)bé hơn hoặc bằng -4
nên ..... bạn tự kết luận
b: Đặt \(x^2-6x-2=a\)
Theo đề, ta có: \(a+\dfrac{14}{a+9}=0\)
=>(a+2)(a+7)=0
\(\Leftrightarrow\left(x^2-6x\right)\left(x^2-6x+5\right)=0\)
=>x(x-6)(x-1)(x-5)=0
hay \(x\in\left\{0;1;6;5\right\}\)
c: \(\Leftrightarrow\dfrac{-8x^2}{3\left(2x-1\right)\left(2x+1\right)}=\dfrac{2x}{3\left(2x-1\right)}-\dfrac{8x+1}{4\left(2x+1\right)}\)
\(\Leftrightarrow-32x^2=8x\left(2x+1\right)-3\left(8x+1\right)\left(2x-1\right)\)
\(\Leftrightarrow-32x^2=16x^2+8x-3\left(16x^2-8x+2x-1\right)\)
\(\Leftrightarrow-48x^2=8x-48x^2+18x+3\)
=>26x=-3
hay x=-3/26
a) ĐKXĐ : \(\hept{\begin{cases}x\ne0\\x\ne2\\x\ne-4\end{cases}}\)
\(A=\frac{3}{x+4}-\frac{x\left(x-1\right)}{x+4}\times\frac{2x-5}{x\left(x-2\right)\left(x+4\right)}-\frac{17}{\left(x+4\right)^2}\)
\(=\frac{3\left(x+4\right)}{\left(x+4\right)^2}-\frac{x\left(x-1\right)\left(2x-5\right)}{\left(x+4\right)x\left(x-2\right)\left(x+4\right)}-\frac{17}{\left(x+4\right)^2}\)
\(=\frac{3x+12}{\left(x+4\right)^2}-\frac{\left(x-1\right)\left(2x-5\right)}{\left(x+4\right)^2\left(x-2\right)}-\frac{17}{\left(x+4\right)^2}\)
\(=\frac{\left(3x+12\right)\left(x-2\right)}{\left(x+4\right)^2\left(x-2\right)}-\frac{2x^2-7x+5}{\left(x+4\right)^2\left(x-2\right)}-\frac{17\left(x-2\right)}{\left(x+4\right)^2\left(x-2\right)}\)
\(=\frac{3x^2+6x-24-2x^2+7x-5-17x+34}{\left(x+4\right)^2\left(x-2\right)}\)
\(=\frac{x^2-4x+5}{\left(x+4\right)^2\left(x-2\right)}=\frac{x^2-4x+5}{x^3+6x^2-32}\)
b) \(18A=1\)
<=> \(18\times\frac{x^2-4x+5}{x^3+6x^2-32}=1\)( ĐK : \(\hept{\begin{cases}x\ne0\\x\ne2\\x\ne-4\end{cases}}\))
<=> \(\frac{x^2-4x+5}{x^3+6x^2-32}=\frac{1}{18}\)
<=> 18( x2 - 4x + 5 ) = x3 + 6x2 - 32
<=> 18x2 - 72x + 90 = x3 + 6x2 - 32
<=> x3 + 6x2 - 32 - 18x2 + 72x - 90 = 0
<=> x3 - 12x2 + 72x - 122 = 0
Rồi đến đây chịu á :)
bn giải dc câu nào thì giải có nhất thiết pk giải hết đâu mà
Lời giải:
Chắc bạn nhầm giữa GTLN và GTNN. Ba biểu thức này chỉ tìm đc min thôi nhé.
Biểu thức 1:
\(A=4x^2+4x+2016=(2x+1)^2+2015\)
Nhận thấy với \(x\in\mathbb{R}\Rightarrow (2x+1)^2\geq 0\Rightarrow (2x+1)^2+2015\geq 2015\)
Do đó \(A_{\min}=2015\Leftrightarrow x=-\frac{1}{2}\)
Biểu thức 2:
\(B=\frac{-7}{x^2+6x+2012}\)
Ta có \(x^2+6x+2012=(x+3)^2+2003\)
Thấy rằng \((x+3)^2\geq 0\forall x\in\mathbb{R}\Rightarrow (x+3)^2+2003\geq 2003\)
\(\Rightarrow \frac{1}{x^2+6x+2012}\leq \frac{1}{2003}\Rightarrow \frac{-7}{x^2+6x+2012}\geq \frac{-7}{2003}\)
\(\Rightarrow B_{\min}=\frac{-7}{2003}\Leftrightarrow x=-3\)
Biểu thức 3:
\(C=(x-1)(x+3)(x+2)(x+6)\)
\(\Leftrightarrow C=[(x-1)(x+6)][(x+2)(x+3)]\)
\(\Leftrightarrow C=(x^2+5x-6)(x^2+5x+6)\)
Đặt \(x^2+5x-6=t\Rightarrow C=t(t+12)=(t+6)^2-36\geq 0-36\)
\(\Leftrightarrow C\geq -36\)
Vậy \(C_{\min}=-36\Leftrightarrow t=-6\Leftrightarrow x^2+5x-6=-6\Leftrightarrow x=0\) hoặc \(x=-5\)
Lời giải:
a)
\(\frac{x-2}{6x^2-6x}-\frac{1}{4x^2-4}=\frac{x-2}{6x(x-1)}-\frac{1}{4(x^2-1)}=\frac{x-2}{6x(x-1)}-\frac{1}{4(x-1)(x+1)}\)
\(=\frac{2(x+1)(x-2)}{12x(x-1)(x+1)}-\frac{3x}{12x(x-1)(x+1)}=\frac{2(x+1)(x-2)-3x}{12x(x-1)(x+1)}\)
\(=\frac{2x^2-5x-4}{12x(x-1)(x+1)}=\frac{2x^2-5x-4}{12x^3-12x}\)
b) ĐK: \(x\neq \pm 1\)
\(\frac{(x+1)(x^2-2x+1)}{6x^3+6}:\frac{x^2-1}{4x^2-4x+4}\)
\(=\frac{(x+1)(x-1)^2}{6(x^3+1)}.\frac{4x^2-4x+4}{x^2-1}\)
\(=\frac{4(x+1)(x-1)^2(x^2-x+1)}{6(x+1)(x^2-x+1)(x^2-1)}\)
\(=\frac{2(x-1)}{3(x+1)}\)