K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(f\left(2019\right)=2020=2019+1\)          \(f\left(2020\right)=2021=2020+1\)Đặt \(h\left(x\right)=-x-1\)và \(g\left(x\right)=f\left(x\right)+h\left(x\right)\)\(\Rightarrow\hept{\begin{cases}g\left(2019\right)=f\left(2019\right)+h\left(2019\right)=2020-2020=0\\g\left(2020\right)=f\left(2020\right)+h\left(2020\right)=2021-2021=0\end{cases}}\)\(\Rightarrow x=2019;x=2020\)là nghiệm của đa thức g(x) mà g(x) là đa thức bậc 3 , hệ số \(x^3\)là...
Đọc tiếp

Ta có: \(f\left(2019\right)=2020=2019+1\)

          \(f\left(2020\right)=2021=2020+1\)

Đặt \(h\left(x\right)=-x-1\)và \(g\left(x\right)=f\left(x\right)+h\left(x\right)\)

\(\Rightarrow\hept{\begin{cases}g\left(2019\right)=f\left(2019\right)+h\left(2019\right)=2020-2020=0\\g\left(2020\right)=f\left(2020\right)+h\left(2020\right)=2021-2021=0\end{cases}}\)

\(\Rightarrow x=2019;x=2020\)là nghiệm của đa thức g(x) mà g(x) là đa thức bậc 3 , hệ số \(x^3\)là số nguyên

\(\Rightarrow g\left(x\right)=a\left(x-2019\right)\left(x-2020\right)\left(x-x_0\right)\)(\(a\in\)Z*)

\(\Rightarrow f\left(x\right)=g\left(x\right)-h\left(x\right)\)

               \(=a\left(x-2019\right)\left(x-2020\right)\left(x-x_0\right)+x+1\)

\(f\left(2021\right)=a\left(2021-2019\right)\left(2021-2020\right)\left(2021-x_0\right)+2021+1\)

                    \(=a.1.2\left(2021-x_0\right)+2022\)

\(f\left(2018\right)=a\left(2018-2019\right)\left(2018-2020\right)\left(2018-x_0\right)+2018+1\)

                      \(=a.1.2.\left(2018-x_0\right)+2019\)

\(\Rightarrow f\left(2021\right)-f\left(2018\right)=a.1.2\left(2021-2018\right)+3\)

                                                     \(=6a+3\)

Làm nốt

 

3
31 tháng 10 2019

Cho đa thức \(f\left(x\right)\)bậc 3 với hệ số \(x^3\)là số nguyên dương thỏa mãn:

\(f\left(2019\right)=2020;f\left(2020\right)=2021\)

CMR \(f\left(2021\right)-f\left(2018\right)\)là hợp số

31 tháng 10 2019

Cho xin cái đề ạ

20 tháng 6 2019

phân tích đa thức thành nhân tử đi

20 tháng 6 2019

1a) A = \(x^2-4x+2023=\left(x-2\right)^2+2019\)

Ta luôn có: (x - 2)2 \(\ge\)\(\forall\)x

 => (x - 2)2 + 2019 \(\ge\)2019 \(\forall\)x

Hay A \(\ge\)\(\forall\)x

Dấu "=" xảy ra khi : (x - 2)2 = 0 => x - 2 = 0 => x = 2

Nên Amin = 2019 khi x = 2

4 tháng 5 2019

ủa bạn j ơi chữ x chành bành ra trên đề kìa mà bạn bảo tìm làm j nữa

4 tháng 5 2019

đâu có đâu bạn ???

Mình dùng công cụ công thức của hoc24.vn mà

Bạn đợi chút nó sẽ load ra liền

26 tháng 7 2019

Ta có: |x - 2019| ≥ 0 => |x - 2019|2019  ≥ 0

           |x - 2020| ≥ 0 => |x - 2020|2020 ≥ 0

+) TH1: \(\hept{\begin{cases}\left|x-2019\right|^{2019}=0\\\left|x-2020\right|^{2020}=1\end{cases}\Rightarrow}\hept{\begin{cases}\left|x-2019\right|=0\\\left|x-2020\right|=1\end{cases}}\Rightarrow\hept{\begin{cases}x-2019=0\\\left|x-2020\right|=1\end{cases}\Rightarrow}\hept{\begin{cases}x=2019\\\left|x-2020\right|=1\end{cases}}\)

Giải: |x - 2020| = 1

TH1: x - 2020 = 1 => x = 2021

TH2: x - 2020 = -1 => x = 2019 

Vì 2021 ≠ 2019

=> x = 2019 

+) TH2: \(\hept{\begin{cases}\left|x-2019\right|^{2019}=1\\\left|x-2020\right|^{2020}=0\end{cases}\Rightarrow}\hept{\begin{cases}\left|x-2019\right|=1\\\left|x-2020\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}\left|x-2019\right|=1\\x-2020=0\end{cases}\Rightarrow}\hept{\begin{cases}\left|x-2019\right|=1\\x=2020\end{cases}}\)

Giải |x - 2019| = 1

Th1: x - 2019 = 1 => x = 2020

Th2: x - 2019 = -1 => x = 2018

Vì 2018 ≠ 2020

=> x = 2020

Vậy x \(\in\){ 2020; 2019 }

P/s: Ko chắc :)

              

28 tháng 2 2020

Trả lời :

Bạn Kan  làm đúng rồi nha !

Học tốt

#Sơn%#

23 tháng 6 2019

\(A=\left|x-2019\right|+\left|x-2020\right|\)

\(=\left|x+\left(-2019\right)\right|+\left|2020-x\right|\)

Ta có :

\(\left\{{}\begin{matrix}\left|x+\left(-2019\right)\right|\ge x+\left(-2019\right)\\\left|2020-x\right|\ge2020-x\end{matrix}\right.\)\(=>A\ge x+\left(-2019\right)+2020-x\)

=>\(A\ge1\)

Dấu "=" xảy ra khi

\(\left\{{}\begin{matrix}x+\left(-2019\right)\ge0\\2020-x\ge0\end{matrix}\right.\)\(=>2019\le x\le2020\)

Vậy GTNN của A=1

Khi \(2019\le x\le2020\)

8 tháng 11 2019

\(A=\left|x-2019\right|+\left|x-2020\right|\)

\(A=\left|2019-x\right|+\left|x-2020\right|\ge\left|2019-x+x-2020\right|=\left|-1\right|=1\)

\(\Rightarrow A\ge1\)

Dấu '' = '' xảy ra

\(\)\(\Leftrightarrow\left\{{}\begin{matrix}2019-x\ge0\\x-2020\ge0\end{matrix}\right.\)

\(\Leftrightarrow2019\le x\le2020\)

Vậy Min A = 1 \(\Leftrightarrow2019\le x\le2020\)

24 tháng 5 2020

Nguyễn Lê Phước Thịnh White Hold HangBich2001 Phạm Vũ Trí Dũng Nguyễn Huyền Trâm