K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 10 2018

\(D=x^2+y^2-4x-4y+16\)

\(D=\left(x^2-4x+4\right)+\left(y^2-4y+4\right)+8\)

\(D=\left(x-2\right)^2+\left(y-2\right)^2\ge8\)

\("="\Leftrightarrow x=y=2\)

24 tháng 9 2018

Tự nghiêng đầu mà đọc nha bạn ~~

1 tháng 4 2017

ta đi chứng minh \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\forall a,b>0\)(tự chứng minh nhé, nhân chéo lên xong phân tích ra nó sẽ ra (a-b)^2/ab lớn hơn bằng 0)

\(M=\frac{18}{2xy}+\frac{17}{x^2+y^2}\ge\frac{17.4}{\left(x+y\right)^2}+\frac{1}{2xy}\)

Chứng minh được \(2xy\le\frac{\left(x+y\right)^2}{2}\forall x,y>0\)

\(\Rightarrow M\ge\frac{68}{16^2}+\frac{2}{\left(x+y\right)^2}=\frac{17}{64}+\frac{2}{16^2}=\frac{35}{128}\)

Đẳng thức xảy ra <=> x=y=8

28 tháng 3 2019

a. giá trị nhỏ nhất của B=3 khi và chỉ khi x=y=1006

29 tháng 8 2016

P=5x+3y+12/x+16/y 
=3x+12/x+y+16/y+2(x+y) 
áp dụng cosi: 3x+12/x>=2√(3.12)=12 
y+16/y>=8 
lại có 2(x+y)>=2.6=12 
nên 
P>=12+8+12=32 
dấu = khi 3x=12/x và y=16/y và x+y=6 
==> x=2; y=4 
giá trị nhỏ nhất P=32 khi x=2; y=4

29 tháng 8 2016

Ta có: \(x+y\ge6\Rightarrow x\ge6-y\)

Vậy GTNN của x là 6 - y.

Thay 6 - y vào biểu thức đã rút gọn có:

\(A=-2y^3+42y^2-176y-96\)

Giả sử y = 0, ,=> P = -232

Do y > 0 nên P > -232

Vậy: \(Min_P=-232\)

a,b,d áp dụng công thức này :

\(ax^2+bx+c=a\left(x+\dfrac{b}{2a}\right)^2+\dfrac{4ac-b^2}{4a}\)

c)

\(x^2+y^2-4\left(x+y\right)=16=x^2-4x+y^2-4y+16\\ =\left(x^2-4x+4\right)+\left(y^2-4y+4\right)+8\\ =\left(x-2\right)^2+\left(y-2\right)^2+8\ge8\)

đẳng thức xảy ra khi và chỉ khi: \(\left\{{}\begin{matrix}x-2=0\\y-2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\\y=2\end{matrix}\right.\Leftrightarrow x=y=2\)

vậy \(MIN_C=8\) tại x = y = 8

24 tháng 9 2018

a ) \(A=x^2-x+1=x^2-x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)Dấu " = " xảy ra \(\Leftrightarrow x-\dfrac{1}{2}=0\Leftrightarrow x=\dfrac{1}{2}\)

Vậy Min A là : \(\dfrac{3}{4}\Leftrightarrow x=\dfrac{1}{2}\)

b ) \(B=x^2+x+1=x^2+x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)Dấu " = " xảy ra \(\Leftrightarrow x+\dfrac{1}{2}=0\Leftrightarrow x=-\dfrac{1}{2}\)

Vậy Min B là : \(\dfrac{3}{4}\Leftrightarrow x=-\dfrac{1}{2}\)

c ) \(C=x^2+y^2-4\left(x+y\right)+16\)

\(=\left(x^2-4x+4\right)+\left(y^2-4y+4\right)+8\)

\(=\left(x-2\right)^2+\left(y-2\right)^2+8\ge8\forall x\)

Dấu " = " xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=2\end{matrix}\right.\)

Vậy Min C là : \(8\Leftrightarrow x=y=2\)

d ) \(D=2x^2+8x+9\)

\(=2\left(x^2+4x+4\right)+1\)

\(=2\left(x+2\right)^2+1\ge1\forall x\)

Dấu " = " xảy ra \(\Leftrightarrow x+2=0\Leftrightarrow x=-2\)

Vậy Min D là : \(1\Leftrightarrow x=-2\)