K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Để biểu thức \(\dfrac{5-2x}{x^2+4}>0\) thì 5-2x>0

\(\Leftrightarrow2x< 5\)

hay \(x< \dfrac{5}{2}\)

21 tháng 12 2018

1.a)\(\frac{x^3}{x^2-4}-\frac{x}{x-2}-\frac{2}{x+2}\)

\(=\frac{x^3}{\left(x+2\right)\left(x-2\right)}-\frac{x}{x-2}-\frac{2}{x+2}\)

Để biểu thức được xác định thì:\(\left(x+2\right)\left(x-2\right)\ne0\)\(\Rightarrow x\ne\pm2\)

                                                      \(\left(x+2\right)\ne0\Rightarrow x\ne-2\)

                                                      \(\left(x-2\right)\ne0\Rightarrow x\ne2\)

                         Vậy để biểu thức xác định thì : \(x\ne\pm2\)

b) để C=0 thì ....

21 tháng 12 2018

1, c , bn Nguyễn Hữu Triết chưa lm xong 

ta có : \(/x-5/=2\)

\(\Rightarrow\orbr{\begin{cases}x-5=2\\x-5=-2\end{cases}}\Rightarrow\orbr{\begin{cases}x=7\\x=3\end{cases}}\)

thay x = 7  vào biểu thứcC

\(\Rightarrow C=\frac{4.7^2\left(2-7\right)}{\left(7-3\right)\left(2+7\right)}=\frac{-988}{36}=\frac{-247}{9}\)KL :>...

thay x = 3 vào C 

\(\Rightarrow C=\frac{4.3^2\left(2-3\right)}{\left(3-3\right)\left(3+7\right)}\)

=> ko tìm đc giá trị C tại x = 3

a: ĐKXĐ: \(x\notin\left\{2;-2\right\}\)

b: \(C=\dfrac{x^3-x^2-2x-2x+4}{\left(x-2\right)\left(x+2\right)}=\dfrac{x^3-x^2-4x+4}{\left(x-2\right)\left(x+2\right)}\)

\(=\dfrac{x^2\left(x-1\right)-4\left(x-1\right)}{\left(x-2\right)\left(x+2\right)}=x-1\)

Để C=0 thì x-1=0

hay x=1

c: Để C>0 thì x-1>0

hay x>1

Vậy: \(\left\{{}\begin{matrix}x\in Z\backslash\left\{1\right\}\\x\notin\left\{2;-2\right\}\end{matrix}\right.\)

14 tháng 11 2018

a,ĐKXĐ: \(x^2-4\ne0\) \(\Leftrightarrow x\ne\pm2\)

b,Rút gọn:

\(C=\frac{x^3}{x^2-4}-\frac{x}{x-2}-\frac{2}{x+2}\)

\(=\frac{x^3}{\left(x-2\right)\left(x+2\right)}-\frac{x}{x-2}-\frac{2}{x+2}\)

\(=\frac{x^3-x\left(x+2\right)-2\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{x^3-x^2-2x-2x+4}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{x^3-x^2-4x+4}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{\left(x^3-4x\right)-\left(x^2-4\right)}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{x\left(x^2-4\right)-\left(x^2-4\right)}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{\left(x^2-4\right)\left(x-1\right)}{x^2-4}\)

\(=x-1\)

Để C = 0 thì x - 1 = 0

                => x = 1

Vậy : Để C = 0 thì x = 1

c,Để C nhận giá trị dương thì C > 0

Hay: x - 1 > 0

<=> x > 1

Vậy: Để C dương thì x > 1

=.= hok tốt!!

20 tháng 12 2019

a) Ta có: A = \(\frac{x+1}{x-2}+\frac{x-1}{x+2}+\frac{x^2+4x}{4-x^2}\)

A = \(\frac{\left(x+1\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{\left(x-1\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}-\frac{x^2+4x}{\left(x-2\right)\left(x+2\right)}\)

A = \(\frac{x^2+3x+2+x^2-3x+2-x^2-4x}{\left(x-2\right)\left(x+2\right)}\)

A = \(\frac{x^2-4x+4}{\left(x-2\right)\left(x+2\right)}\)

A = \(\frac{\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}=\frac{x-2}{x+2}\)

b) Với x = 4 => A = \(\frac{4-2}{4+2}=\frac{2}{8}=\frac{1}{4}\)

c) ĐKXĐ: \(\hept{\begin{cases}x-2\ne0\\x+2\ne0\\4-x^2\ne0\end{cases}}\) <=> \(\hept{\begin{cases}x\ne2\\x\ne-2\\x\ne\pm2\end{cases}}\) <=> \(x\ne\pm2\)

Ta có: A = \(\frac{x-2}{x+2}=\frac{\left(x+2\right)-4}{x+2}=1-\frac{4}{x+2}\)

Để A  nhận giá trị nguyên dương <=> \(1-\frac{4}{x+2}\) nguyên dương

<=> \(-\frac{4}{x+2}\) nguyên dương <=> -4 \(⋮\)x + 2

 <=> x + 2 \(\in\)Ư(-4) = {1; -1; 2; -2; 4; -4}

Lập bảng: 

x + 2 1 -1 2 -2 4 -4
  x-1(tm)-3(tm)0(tm)-4(tm) 2(ktm)-6(tm)

Vậy ....

21 tháng 12 2021

a: \(M=\dfrac{x^2-3x+2x^2+6x-3x^2-9}{\left(x-3\right)\left(x+3\right)}=\dfrac{3}{x+3}\)

21 tháng 12 2021

câu b c d e đâu anh ơi

 

18 tháng 12 2017

\(\frac{x^2+2x}{2x+10}+\frac{x-5}{x}+\frac{50-5x}{2x\left(x+5\right)}=\frac{x^2+2x}{2\left(x+5\right)}+\frac{x-5}{x}+\frac{50-5x}{2x\left(x+5\right)}=\)

\(=\frac{x\left(x^2+2x\right)+2\left(x+5\right)\left(x-5\right)+50-5x}{2x\left(x+5\right)}=\frac{x^3+2x^2+2x^2-50+50-5x}{2x\left(x+5\right)}=\frac{x^3+4x^2-5x}{2x\left(x+5\right)}=\)

\(=\frac{x\left(x^2+4x-5\right)}{2x\left(x+5\right)}=\frac{x\left(x^2+4x-5\right)}{2x\left(x+5\right)}=\frac{x\left(x^2-1+4\left(x-1\right)\right)}{2x\left(x+5\right)}=\frac{x\left(x-1\right)\left(x+5\right)}{2x\left(x+5\right)}\)

a/ Để biểu thức xác đinh => 2x(x+5) khác 0 => x khác 0 và x khác -5

b/ Gọi biểu thức là A. Rút gọn A ta được: 

\(A=\frac{x\left(x-1\right)\left(x+5\right)}{2x\left(x+5\right)}=\frac{x-1}{2}\left(x\ne0;x\ne-5\right)\)

A=1 => x-1=2 => x=3

c/ A=-1/2 <=> x-1=-1 => x=0

d/ A=-3 <=> x-1=-6  => x=-5

4 tháng 9 2021

a) \(A=x^2-x+1=\left(x^2-2.\dfrac{1}{2}x+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\)

b) \(B=\left(x-2\right)\left(x-4\right)+3=x^2-6x+8+3=\left(x-3\right)^2+2\ge2>0\)

c) \(C=2x^2-4xy+4y^2+2x+5=\left(x-2y\right)^2+\left(x+1\right)^2+4\ge4>0\)