Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = ( x - 2 )2 + 2019
( x- 2 )2 \(\ge0\forall x\)
=> ( x - 2)2 + 2019 \(\ge2019\)
=> A \(\ge2019\)
Dấu " = " xảy ra <=> ( x - 2)2 =0
<=> x = 2
b) Bạn xem lại đề nha !Nếu đề không sai thì nhắn lại với mình
c) C = -( 3 -x)100 - 3. ( y + 2 )200 + 2020
( 3-x )100 \(\ge0\forall x\)
=> - ( 3-x)100 \(\le0\forall x\)
Tương tự : - 3.( y+2)100 \(\le0\forall y\)
=> C \(\le2020\)
Dấu " = " xảy ra <=> \(\hept{\begin{cases}\left(3-x\right)^{100}=0\\\left(y+2\right)^{100}=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=3\\y=-2\end{cases}}\)
@Shadow@ Đề câu b) đúng rồi đó
\(B=\left(x-3\right)^2+\left(y-2\right)^2-2018\)
ta có: \(\hept{\begin{cases}\left(x-3\right)^2\ge0\forall x\inℤ\\\left(y-2\right)^2\ge0\forall y\inℤ\end{cases}}\)
=> \(\left(x-3\right)^2+\left(y-2\right)^2-2018\le2018\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left(x-3\right)^2=0\\\left(y-2\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-3=0\\y-2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=3\\y=2\end{cases}}}\)
\(A=\left|4x-3\right|+\left|5y+7,5\right|+17,5\)
Ta thấy \(\left|4x-3\right|\ge0;\left|5y+7,5\right|\ge0\)
\(\Rightarrow\left|4x-3\right|+\left|5y+7,5\right|+17,5\ge17,5\)
\(\Rightarrow A\ge17,5\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}4x-3=0\\5y+7,5=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{3}{4}\\y=-1,5\end{cases}}\)
...
\(B=\left|x-2\right|+\left|x-6\right|+2017\)
\(=\left|x-2\right|+\left|6-x\right|+2017\)
Ta thấy \(\left|x-2\right|+\left|6-x\right|\ge\left|x-2+6-x\right|=4\)
\(\Rightarrow B\ge4+2017=2021\)
Dấu "=" xảy ra khi \(2\le x\le6\)
....
\(C=\left(2x+1\right)^{2020}-2019\)
Ta thấy \(\left(2x+1\right)^{2020}\ge0\)
\(\Rightarrow C=\left(2x+1\right)^{2020}-2019\ge-2019\)
Dấu "=" xảy ra khi \(2x+1=0\Leftrightarrow x=-\frac{1}{2}\)
....
\(A=3\left(x-3\right)^2+\left(y-1\right)^2+2005\)
Nhận xét: \(\left(x-3\right)^2\ge0\forall x\)\(\Rightarrow3\left(x-3\right)^2\ge0\forall x\)
\(\left(y-1\right)^2\ge0\forall y\)
\(\Rightarrow3\left(x-3\right)^2+\left(y-1\right)^2\ge0\forall x,y\)
\(\Rightarrow3\left(x-3\right)^2+\left(y-1\right)^2+2005\ge2005\forall x,y\)
Vậy \(minA=2005\)khi \(3\left(x-3\right)^2=0\)\(\Rightarrow x-3=0\)\(\Rightarrow x=3\)
\(\left(y-1\right)^2=0\)\(\Rightarrow y-1=0\)\(\Rightarrow y=1\)
KL: Vậy \(minA=2005\) khi \(x=3;y=1\)
\(B=\left(x^2-9\right)^2+|y-2|-1\)
Nhận xét: \(\left(x^2-9\right)^2\ge0\forall x\)
\(|y-2|\ge0\forall y\)
\(\Rightarrow\left(x^2-9\right)^2+|y-2|\ge0\forall x,y\)
\(\Rightarrow\left(x^2-9\right)^2+|y-2|-1\ge-1\forall x,y\)
Vậy \(minB=-1\)khi \(\left(x^2-9\right)^2=0\)\(\Rightarrow x^2-9=0\)\(\Rightarrow x^2=9\)\(\Rightarrow x=3\)
\(|y-2|=0\)\(\Rightarrow y=2\)
KL: Vậy \(minB=-1\) khi \(x=3;y=2\)
\(C=x^2-2x+5\)
\(\Rightarrow C=x^2-2x+1+4\)
\(\Rightarrow C=\left(x-1\right)^2+4\)
Nhận xét: \(\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-1\right)^2+4\ge4\forall x\)
Vậy \(minB=4\) khi \(\left(x-1\right)^2=0\)\(\Rightarrow x-1=0\)\(\Rightarrow x=1\)
KL: Vậy \(minB=4\) khi \(x=1\)