Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\left|2x-\frac{1}{3}\right|\ge0\)
\(\Rightarrow A=\left|2x-\frac{1}{3}\right|+107\ge107\)
\(\Rightarrow\)Dấu " =" xảy ra khi \(\left|2x-\frac{1}{3}\right|=0\)
\(\Rightarrow2x-\frac{1}{3}=0\)
\(\Rightarrow2x=\frac{1}{3}\)
\(\Rightarrow x=\frac{1}{6}\)
Vậy A đạt GTNN = 107 khi x = \(\frac{1}{6}\)
b) Ta có: \(\left|x+\frac{3}{5}\right|\ge0\)
\(\Rightarrow B=\left|x+\frac{3}{5}\right|-\frac{1}{2}\ge\frac{-1}{2}\)
=> Dấu" = " xảy ra khi \(\left|x+\frac{3}{5}\right|=0\)
\(\Rightarrow x+\frac{3}{5}=0\)
\(\Rightarrow x=\frac{-3}{5}\)
Vậy B đạt GTNN = \(\frac{-1}{2}\) Khi x = \(\frac{-3}{5}\)
a) |x + 1| > 0
|x + 1| + 5 > 5
\(\Rightarrow\) min A = 5 khi x = - 1
b) \(B=\frac{x^2+15}{x^2+3}=\frac{x^2+3+12}{x^2+3}=1+\frac{12}{x^2+3}\)
x2 > 0
x2 + 3 > 3
\(\frac{1}{x^2+3}\le\frac{1}{3}\)
\(\frac{12}{x^2+3}\le4\)
\(1+\frac{12}{x^2+3}\le5\)
\(\Rightarrow\) max B = 5 khi x = 0
a: \(A=2\cdot\left|3x-2\right|-1\ge-1\forall x\)
Dấu '=' xảy ra khi x=2/3
b: \(B=5\cdot\left|1-4x\right|-1\ge-1\forall x\)
Dấu '=' xảy ra khi x=1/4
c: \(x^2+3\left|y-2\right|-1\ge-1\forall x,y\)
Dấu '=' xảy ra khi x=0 và y=2
a) \(|x+4|=\frac{7}{3}\) \(\Rightarrow x+4=\pm\left(\frac{7}{3}\right)\)
TH1: \(x+4=\frac{7}{3}\)
\(x=\frac{7}{3}-4=-\frac{5}{3}\)
TH2: \(x+4=-\frac{7}{3}\)
\(x=-\frac{7}{3}-4=-\frac{19}{3}\)