Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left|x+\frac{3}{2}\right|\)
Vì \(\left|x+\frac{3}{2}\right|\ge0\)
Vậy \(GTNN_A=0\)tại \(x=\frac{-3}{2}\)
\(B=\left|x-\frac{1}{2}\right|+\frac{3}{4}\)
Vì \(\left|x-\frac{1}{2}\right|\ge0\)nên \(\left|x-\frac{1}{2}\right|+\frac{3}{4}\ge\frac{3}{4}\)
Vậy \(GTNN_B=\frac{3}{4}\)tại \(x=\frac{1}{2}\)
\(A=\left|x+2\right|+\left|x+3\right|+\left|x-4\right|+\left|x-5\right|\)
ta có :
\(\left|x+2\right|\ge0\)
\(\left|x+3\right|\ge0\)
\(\left|x-4\right|\ge0\)
\(\left|x-5\right|\ge0\)
nên :
\(\left|x+2\right|+\left|x+3\right|+\left|x-4\right|+\left|x-5\right|\ge0\)
dấu "=" xảy ra khi :
\(\left|x+2\right|+\left|x+3\right|+\left|x-4\right|+\left|x-5\right|=0\)
\(\Rightarrow x+2+x+3+x-4+x-5=0\)
\(\Rightarrow4x-3=0\)
\(\Rightarrow4x-3\)
\(\Rightarrow x=\frac{3}{4}\)
vậy Amin = 0 khi x = 3/4
phần b bn làm tương tự
Vì \(\hept{\begin{cases}\left|x-5\right|\ge0\forall x\\\left|x+y+7\right|\ge0\forall x,y\end{cases}}\Rightarrow\left|x-5\right|+\left|x+y+7\right|\ge0\forall x,y\)
=> \(\left|x+5\right|+\left|x+y+7\right|+25\ge25\forall x,y\)
Dấu " = " xảy ra khi và chỉ khi \(\hept{\begin{cases}\left|x+5\right|=0\\\left|x+y+7\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-5\\\left|-5+y+7\right|=0\end{cases}}\)
=> \(\hept{\begin{cases}x=-5\\\left|2+y\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-5\\y=-2\end{cases}}\)
Vậy GTNN của T là 25 khi x = -5,y = -2