K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2016

bn đăng hoài và mk cũng rất chú ý tới bài này nhưng bài này k có GTNN, MONG BN XEM LẠI ĐỀ

5 tháng 8 2016

\(B=x^2+xy+y^2-3x-3y+2016\)

\(=x^2+xy-3x+y^2-3y+2016\)

\(=x^2+x\left(y-3\right)+y^2-3y+2016\)

\(=x^2+2.x.\frac{y-3}{2}+\left(\frac{y-3}{2}\right)^2+y^2-3y-\left(\frac{y-3}{2}\right)^2+2016\)

\(=\left(x+\frac{y-3}{2}\right)^2+y^2-3y-\frac{y^2-6y+9}{4}+2016\)

\(=\left(x+\frac{y-3}{2}\right)^2+y^2-3y-\frac{y^2}{4}+\frac{3}{2}y-\frac{9}{4}+2016\)

\(=\left(x+\frac{y-3}{2}\right)^2+\frac{3}{4}y^2-\frac{3}{2}y+\frac{8055}{4}\)

\(=\left(x+\frac{y-3}{2}\right)^2+\frac{3}{4}\left(y^2-2y+1\right)+2013=\left(x+\frac{y-3}{2}\right)^2+\frac{3}{4}\left(y-1\right)^2+2013\ge2013\) (với mọi x,y)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x+\frac{y-3}{2}=0\\y-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}}\)

Vậy minB=2013 khi x=y=1

Bài này tìm đc GTNN nhé

30 tháng 7 2016

D= 5x^2+8xy+5y^2-2x+2y  

=4x^2+8xy+4y^2-2x+2y+y^2+x^2

=(2x+2y)^2+x^2-2*1/2x+1/4+y^2+2*1/2y+1/4-1/2

(2x+2y)^2+(x-1/2)^2+(y+1/2)^2-1/2>=-1/2

suy ra D>=-1/2 nên D có GTNN là -1/2

30 tháng 7 2016

Ta có : 5D = 25x2 + 40xy + 25y2 - 10x + 10y

5D = (5x+ 4y - 1)2 + 9y2 + 18y - 1  

5D = ( 5x + 4y - 1)2 + 9 (y + 1)- 2

D =\(\frac{1}{5}\). ( 5x + 4y - 1)2 + \(\frac{9}{5}\).( y + 1) -  \(\frac{2}{5}\)  \(\ge\)\(\frac{-2}{5}\)

Dấu "=" xảy ra khi y+1 = 0  \(\Leftrightarrow\)y = -1

                          5x + 4y - 1 = 0  \(\Leftrightarrow\)x=1

Vậy GTNN của D = \(\frac{-2}{5}\)khi x = 1 ; y = -1

AH
Akai Haruma
Giáo viên
21 tháng 8 2024

Lời giải:

Ta có:

$A=x^2+xy+y^2-3x-3y+2008$
$2A=2x^2+2xy+2y^2-6x-6y+4016$

$=(x^2+2xy+y^2)-4(x+y)+4+ (x^2-2x+1)+(y^2-2y+1)+ 4010$

$=(x+y)^2-4(x+y)+4+(x^2-2x+1)+(y^2-2y+1)+4010$

$=(x+y-2)^2+(x-1)^2+(y-1)^2+4010\geq 4010$

$\Rightarrow A\geq 2005$

Vậy $A_{\min}=2005$

Giá trị này đạt tại $x+y-2=x-1=y-1=0$

$\Leftrightarrow x=y=1$

29 tháng 12 2015

A=x^2-2x+y^2-2y-x-y+xy

A+3=x^2-2x+1+y^2-2y+1-x-y+xy+1=(x-1)^2+(y-1)^2+(x-1)(y-1)

dat x-1=a;y-1=b

=>A+3=a^2+b^2+ab =a^2+1/4b^2+ab+3/4b^2=(a+1/2b)^2+3/4b^2

=>A+3>=0 <=>x=1;y=1

=>Amin =-3<=> x=1;y=1

 

2 tháng 12 2019

Em tham khảo link: Câu hỏi của Chi Cay - Toán lớp 9 - Học toán với OnlineMath