Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=x^2+4y^2+15-6x-8y\)
\(A=\left(x^2-6x+9\right)+\left(\left(2y\right)^2-8y+4\right)-9-4+15\)
\(A=\left(x-3\right)^2+\left(2y-2\right)^2+2\)
Có \(\left(x-3\right)^2\ge0\)với mọi x
\(\left(2y-2\right)^2\ge0\)với mọi y
Do đó \(A\ge2\)
Vậy giá trị nhỏ nhất của A là 2 đạt được \(\Leftrightarrow\hept{\begin{cases}\left(x-3\right)^2=0\\\left(2y-2\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=3\\y=1\end{cases}}}\)
Câu b làm tương tự bạn sẽ tìm được giá trị nhỏ nhất của B là 4 đạt được \(\Leftrightarrow\hept{\begin{cases}x=-\frac{5}{2}\\y=\frac{1}{3}\end{cases}}\)
\(A=x^2+4y^2+15-6x-8y\)
\(A=\left(x^2-6x+9\right)+\left(\left(2y\right)^2-8y+4\right)-9-4+15\)
\(A=\left(x-3\right)^2+\left(2y-2\right)^2-8y+4-9-4+15\)
\(c\text{ó}\left(x-3\right)^2\ge0-v\text{ới}-m\text{ọi}-x\)
x^2+4y^2-6x-4y+15
=x2-6x+9+4y2-4y+1+5
=(x-3)2+(y-2)2+5
vì (x-3)2\(\ge\)0;(y-2)2\(\ge\)0 (với mọi x;y)
nên (x-3)2+(y-2)2+5\(\ge\)5
dấu "=" xảy ra khi
x-3=0 và y-2=0
x=3 và y=2
vậy GTNN của x^2+4y^2-6x-4y+15 là 5 tại x=3 và y=2
Ta tách ra được
\(=\left(x^2-4\text{x}y+4y^2\right)+\left(x^2-4\text{x}y+4y^2\right)+\left(x^2-4\text{x}y+4y^2\right)+2y^2+6\text{x}-8y+10\)
\(=\left(x-2y\right)^2+\left(x-2y\right)^2+\left(x-2y\right)^2+2y^2+6\text{x}-8y+10\)
\(=3\left(x-2y\right)^2+2y^2+6\text{x}-8y+10\)
Bạn để ý rằng nếu x và y cùng bằng không thì những số sau dù có nhân 2 hoặc bình phương đều ra bằng 0 nên ta suy ra
GTNN của \(3\left(x-2y\right)^2+2y^2+6\text{x}-8y+10>=10\)
Dấu bằng xảy ra khi x=y=0
Vậy GTNN của bt là 10 khi x=y=0
tick cho mình nha
Câu 1: Tự làm :D
Câu 2: \(A=\left(x-y\right)^2+\left(y-2\right)^2+1\ge1\)
Đẳng thức xảy ra khi x = y = 2
Vậy...
Câu 3:
a) Trùng với câu 2
b) ĐK:x khác -1
\(B=\frac{3\left(x+1\right)}{x^2\left(x+1\right)+\left(x+1\right)}=\frac{3\left(x+1\right)}{\left(x^2+1\right)\left(x+1\right)}\)
\(=\frac{3}{x^2+1}\le\frac{3}{0+1}=3\)
Đẳng thức xảy ra khi x = 0
Làm nốt cái câu 1 và đầy đủ cái câu 2:v
\(\frac{1}{x^2+9x+20}+\frac{1}{x^2+11x+30}+\frac{1}{x^2+13x+42}=\frac{1}{18}\)
\(\Leftrightarrow\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}+\frac{1}{\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)
\(\Leftrightarrow\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}+\frac{1}{x+6}-\frac{1}{x+7}=\frac{1}{18}\)
\(\Leftrightarrow\frac{1}{x+4}-\frac{1}{x+7}=\frac{1}{18}\)
Làm nốt nha.Lười quá:((
2
\(A=x^2-2xy+2y^2-4y+5\)
\(A=\left(x-2xy+y^2\right)+\left(y^2-4y+4\right)+1\)
\(A=\left(x-y\right)^2+\left(y-2\right)^2+1\)
\(A\ge1\)
Dấu "=" xảy ra tại \(x=y=2\)
2.) A=x2-6x+15=(x-3)2+6
Vì (x-3)2>=0 với mọi x
=> (x-s)2+6>=6 với mọi x
hay A>=6 với mọi x
Dấu = xảy ra <=> x-3=0 <=> x=3
Vậy....
B=x2+4y2-4x+4y+15 = (x2-4x+4)+(4y2+4y+1)+10= (x-2)2+(2y+1)2+10
vì (x-2)2 >= 0 với mọi x ; (2y+1)2>=0 với mọi y
6>0
=> (x-2)2+(2y+1)2 + 6>=6 với mọi x;y
hay B>=6 với mọi x;y
Dấu = xảy ra <=> x-2=0 và 2y+1=0
<=> x=2 và y=-1/2
Vậy....
3) A= -x2+4x+3= -(x2-4x+4)+7 = -(x-2)2+7
vì -(x-2)2<=0 với mọi x
=> -(x-2)2+7<=7 với mọi x
hay A<=7 với mọi x
Dấu = xảy ra <=> x-2=0 <=> x=2
Vậy....
B=-x2-9y2+2x-6y+5= -(x2-2x+1)-(9y2+6y+1)+7 = -(x-1)2-(3y+1)2+7
vì -(x-1)2<=0 với mọi x
-(3y+1)2<=0 với mọi y
suy ra: -(x-1)2-(3y+1)2<=0 với mọi x;y
=> -(x-1)2-(3y+1)2+7<=7 với mọi x;y
hay A<=7 với mọi x, y
Dấu = xảy ra <=> x-1=0 và 3y+1=0
<=> x=1 và y=-1/3
vậy...
=x^2-6x+9+4y^2-8y+4+2010
=(x-3)^2+(2y-2)^2+2010>=2010
Dấu = xảy ra khi x=3 và y=1