Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\left(2x-1\right)^4\ge0\forall x\)
\(\Rightarrow5-\left(2x-1\right)^4\le5\forall x\)
Dấu " = " xảy ra
\(\Leftrightarrow\left(2x-1\right)^4=0\)
\(\Leftrightarrow2x-1=0\)
\(\Leftrightarrow2x=1\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy \(GTLN\)của D là 5 \(\Leftrightarrow x=\frac{1}{2}\)
Tham khảo nha !!!
a) \(N=\left|3x+8,4\right|-14,2\)
Vì \(\left|3x+8,4\right|\ge0\forall x\)\(\Rightarrow\left|3x+8,4\right|-14,2\ge-14,2\forall x\)
Dấu " = " xảy ra \(\Leftrightarrow3x+8,4=0\)
\(\Leftrightarrow3x=-8,4\)\(\Leftrightarrow x=-2,8\)
Vậy \(minN=-14,2\)\(\Leftrightarrow x=-2,8\)
b) \(E=5,5-\left|2x-1,5\right|\)
Vì \(\left|2x-1,5\right|\ge0\forall x\)\(\Rightarrow-\left|2x-1,5\right|\le0\forall x\)
\(\Rightarrow5,5-\left|2x-1,5\right|\le5,5\forall x\)
Dấu " = " xảy ra \(\Leftrightarrow2x-1,5=0\)
\(\Leftrightarrow2x=1,5\)\(\Leftrightarrow x=0,75\)
Vậy \(maxE=5,5\)\(\Leftrightarrow x=0,75\)
A= 3x2 - 2x + 3
= 3(x2- 2/3x + 1/9 ) + 8/3
= 3(x-1/3)2 + 8/3 > 8/3 \(\forall\)x
dấu ''='' xảy ra <=> x = 1/3
/HT\
Nhầm đề rồi mấy bạn trả lời
Bảo là giá trị nguyên của ,\(\frac{2x-3}{3x+2}\) , các bạn ghi là \(3x^2-2x+3\)rồi
HT
do \(\left(2x-3\right)^4\ge0\forall x\)
\(\Rightarrow\left(2x-3\right)^4-2\ge-2\forall x\)
Dấu "=" xảy ra khi:
\(2x-3=0\Rightarrow x=\frac{3}{2}\)
Vậy giá trị nhỏ nhất của biểu thứ là -2 khi \(x=\frac{3}{2}\)
Ta có : \(\left(2x-3\right)^4\ge0\)
\(\Rightarrow\left(2x-3\right)^4-2\ge-2\)
Dấu " = " xảy ra \(\Leftrightarrow\) \(\left(2x-3\right)^4=0\Leftrightarrow\left(2x-3\right)=0\)
\(\Leftrightarrow2x=3\Leftrightarrow x=\frac{3}{2}\)