K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2017

1) \(\left(x-3\right)\left(x-5\right)+44\)

\(=x^2-3x-5x+15+44\)

\(=x^2-8x+59\)

\(=x^2-2.x.4+4^2+43\)

\(=\left(x-4\right)^2+43\ge43>0\)

\(\rightarrowĐPCM.\)

2) \(x^2+y^2-8x+4y+31\)

\(=\left(x^2-8x\right)+\left(y^2+4y\right)+31\)

\(=\left(x^2-2.x.4+4^2\right)-16+\left(y^2+2.y.2+2^2\right)-4+31\)

\(=\left(x-4\right)^2+\left(y+2\right)^2+11\ge11>0\)

\(\rightarrowĐPCM.\)

3)\(16x^2+6x+25\)

\(=16\left(x^2+\dfrac{3}{8}x+\dfrac{25}{16}\right)\)

\(=16\left(x^2+2.x.\dfrac{3}{16}+\dfrac{9}{256}-\dfrac{9}{256}+\dfrac{25}{16}\right)\)

\(=16\left[\left(x+\dfrac{3}{16}\right)^2+\dfrac{391}{256}\right]\)

\(=16\left(x+\dfrac{3}{16}\right)^2+\dfrac{391}{16}>0\)

-> ĐPCM.

4) Tương tự câu 3)

5) \(x^2+\dfrac{2}{3}x+\dfrac{1}{2}\)

\(=x^2+2.x.\dfrac{1}{3}+\dfrac{1}{9}-\dfrac{1}{9}+\dfrac{1}{2}\)

\(=\left(x+\dfrac{1}{3}\right)^2+\dfrac{7}{18}>0\)

-> ĐPCM.

6) Tương tự câu 5)

7) 8) 9) Tương tự câu 3).

15 tháng 7 2017

Giải rõ giúp mình với

28 tháng 3 2018

a) \(ĐKXĐ:x\ne\pm3;x\ne-6\)

Với \(x\ne\pm3;x\ne-6\), ta có:

\(P=\left(\dfrac{x}{x-3}-\dfrac{2}{x+3}+\dfrac{x^2}{9-x^2}\right):\dfrac{x+6}{3x+9}\\ =\left(\dfrac{x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\dfrac{2\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}-\dfrac{x^2}{\left(x+3\right)\left(x-3\right)}\right)\cdot\dfrac{3\left(x+3\right)}{x+6}\\ =\dfrac{x^2+3x-2x+6-x^2}{\left(x+3\right)\left(x-3\right)}\cdot\dfrac{3\left(x+3\right)}{x+6}\\ =\dfrac{x+6}{\left(x+3\right)\left(x-3\right)}\cdot\dfrac{3\left(x+3\right)}{x+6}\\ =\dfrac{3}{x-3}\)

Vậy \(P=\dfrac{3}{x-3}\) với \(x\ne\pm3;x\ne-6\)

b) Ta có: \(2x-\left|4-x\right|=5\)

+) Nếu \(x\le4\Leftrightarrow2x-\left(4-x\right)=5\)

\(\Leftrightarrow2x-4+x=5\\ \Leftrightarrow3x=9\\ \Leftrightarrow x=3\left(Tm\right)\)

+) Nếu \(x>4\Leftrightarrow2x-\left(x-4\right)=5\)

\(\Leftrightarrow2x-x+4=5\\ \Leftrightarrow x=1\left(Ktm\right)\)

Với \(x\ne\pm3;x\ne-6\)

Khi \(x=3\left(Ktm\right)\rightarrow\text{loại}\)

Vậy khi \(2x-\left|4-x\right|=5\) không có giá trị.

28 tháng 3 2018

c) Với \(x\ne\pm3;x\ne-6\)

Để P nhận giá trị nguyên

thì \(\Rightarrow\dfrac{3}{x-3}\in Z\)

\(\Rightarrow3⋮x-3\\ \Rightarrow x-3\inƯ_{\left(3\right)}\)

\(Ư_{\left(3\right)}=\left\{\pm1;\pm3\right\}\)

Lập bảng giá trị:

\(x-3\) \(-3\) \(-1\) \(1\) \(3\)
\(x\) \(0\left(TM\right)\) \(2\left(TM\right)\) \(4\left(TM\right)\) \(6\left(KTM\right)\)

Vậy để P nhận giá trị nguyên

thì \(x\in\left\{0;2;4\right\}\)

d) Với \(x\ne\pm3;x\ne-6\)

Ta có : \(P^2-P+1=\dfrac{9}{\left(x-3\right)^2}-\dfrac{3}{x-3}+1\)

Đặt \(\dfrac{3}{x-3}=y\)

\(\Rightarrow P^2-P+1=y^2-y+1\\ =y^2-y+\dfrac{1}{4}+\dfrac{3}{4}\\ =\left(y^2-y+\dfrac{1}{4}\right)+\dfrac{3}{4}\\ =\left(y-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

Do \(\left(y-\dfrac{1}{2}\right)^2\ge0\forall y\)

\(\Rightarrow P^2-P+1=\left(y-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall y\)

Dấu "=" xảy ra khi:

\(\left(y-\dfrac{1}{2}\right)^2=0\\ \Leftrightarrow y-\dfrac{1}{2}=0\\ \Leftrightarrow y=\dfrac{1}{2}\\ \Leftrightarrow\dfrac{3}{x-3}=\dfrac{1}{2}\\ \Leftrightarrow x-3=6\\ \Leftrightarrow x=9\left(TM\right)\)

Vậy \(GTNN\) của biểu thức là \(\dfrac{3}{4}\) khi \(x=9\)

Bài 1: 

a: \(A=\dfrac{x^4+x^3+x+1}{x^4-x^3+2x^2-x+1}=\dfrac{x^3\left(x+1\right)+\left(x+1\right)}{x^4-x^3+x^2+x^2-x+1}\)

\(=\dfrac{\left(x+1\right)\left(x^3+1\right)}{\left(x^2-x+1\right)\left(x^2+1\right)}=\dfrac{\left(x+1\right)^2}{x^2+1}\)

Để A=0 thì x+1=0

hay x=-1

b: \(B=\dfrac{x^4-5x^2+4}{x^4-10x^2+9}=\dfrac{\left(x^2-1\right)\left(x^2-4\right)}{\left(x^2-1\right)\left(x^2-9\right)}=\dfrac{x^2-4}{x^2-9}\)

Để B=0 thi (x-2)(x+2)=0

=>x=2 hoặc x=-2

10 tháng 8 2017

a) \(\dfrac{2x+3}{x-5}=\dfrac{2\left(x-5\right)+13}{x-5}=2+\dfrac{13}{x-5}\)

Để \(2+\dfrac{13}{x-5}\in Z\)

thì \(\dfrac{13}{x-5}\in Z\Rightarrow13⋮x-5\)

\(\Rightarrow x-5\inƯ\left(13\right)\)

\(\Rightarrow x-5\in\left\{\pm1;\pm13\right\}\)

Xét các trường hợp...

b) \(\dfrac{x^3-x^2+2}{x-1}=\dfrac{x^2\left(x-1\right)+2}{x-1}=x^2+\dfrac{2}{x-1}\)

Tương tự câu a)

c) \(\dfrac{x^3-2x^2+4}{x-2}=\dfrac{x^2\left(x-2\right)+4}{x-2}=x^2+\dfrac{4}{x-2}\)

...

d) \(\dfrac{2x^3+x^2+2x+2}{2x+1}=\dfrac{x^2\left(2x+1\right)+2x+2}{2x+1}=x^2+\dfrac{2x+2}{2x+1}\)

Khi đó lí luận cho \(2x+2⋮2x+1\)

\(\Rightarrow\left(2x+1\right)+1⋮2x+1\)

\(\Rightarrow1⋮2x+1\)

\(\Rightarrow2x+1\inƯ\left(1\right)\)

...

e) \(\dfrac{3x^3-7x^2+11x-1}{3x-1}=\dfrac{x^2\left(3x-1\right)-2x\left(3x-1\right)+3\left(3x-1\right)+2}{3x-1}\)

\(=\dfrac{\left(x^2-2x+3\right)\left(3x-1\right)+2}{3x-1}=\left(x^2-2x+3\right)+\dfrac{2}{3x-1}\)

...

f) \(\dfrac{x^4-16}{x^4-4x^3+8x^2-16x+16}=\dfrac{\left(x^2\right)^2-4^2}{\left(x-2\right)^2\left(x^2+4\right)}\)

\(=\dfrac{\left(x^2-4\right)\left(x^2+4\right)}{\left(x-2\right)^2\left(x^2+4\right)}=\dfrac{x^2-4}{\left(x-2\right)^2}=\dfrac{x+2}{x-2}=\dfrac{\left(x-2\right)+4}{x-2}=1+\dfrac{4}{x-2}\)

....

10 tháng 8 2017

thank you

15 tháng 7 2016

a) \(A=-x^2+4x+3=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\ge7\)

Dấu "=" xảy ra khi và chỉ khi x = 2

Vậy Max A = 7 <=> x = 2

b) \(B=-x^2+x=-\left(x^2-2.x.\frac{1}{2}+\frac{1}{4}\right)+\frac{1}{4}=-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)

Dấu "=" xảy ra khi và chỉ khi x = \(\frac{1}{2}\)

Vậy Max B = \(\frac{1}{4}\Leftrightarrow x=\frac{1}{2}\)

c) \(C=-2x^2+2x-5=-2\left(x^2-x\right)-5=-2\left(x^2-2.x.\frac{1}{2}+\frac{1}{4}\right)+\frac{1}{2}-5\)

\(=-2\left(x-\frac{1}{2}\right)^2-\frac{9}{2}\le-\frac{9}{2}\)

Dấu "=" xảy ra khi và chỉ khi x = \(\frac{1}{2}\)

Vậy Max C = \(-\frac{9}{2}\Leftrightarrow x=\frac{1}{2}\)

24 tháng 6 2017

\(a,A=4x-x^2+3=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\) Vậy \(Max_A=7\) khi \(x-2=0\Rightarrow x=2\)

\(b,x-x^2=-\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{1}{4}=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\le\dfrac{1}{4}\)Vậy \(Max_B=\dfrac{1}{4}\) khi \(x-\dfrac{1}{2}=0\Rightarrow x=\dfrac{1}{2}\)

\(c,2x-2x^2+5=-2\left(x^2-x+\dfrac{1}{4}\right)-\dfrac{9}{2}=-\left(x-\dfrac{1}{2}\right)-\dfrac{9}{2}\le\dfrac{-9}{2}\)Vậy \(Max_C=\dfrac{-9}{2}\) khi \(x-\dfrac{1}{2}=0\Rightarrow x=\dfrac{1}{2}\)

14 tháng 8 2017

My Nguyễn ơi,bạn truy cập vào đường link này để tìm câu hỏi tương tự của câu a/Bài 1 nhé

https://vn.answers.yahoo.com/question/index?qid=20110206184834AAokV5m&sort=N

14 tháng 8 2017

Ko biết đợi đứa khác đê

4 tháng 7 2017

B3;a,ĐKXĐ:\(x\ne\pm4\)

A=\(\left(\dfrac{4}{x-4}-\dfrac{4}{x+4}\right)\dfrac{x^2+8x+16}{32}=\left(\dfrac{4x+16}{x^2-16}-\dfrac{4x-16}{x^2-16}\right)\dfrac{x^2+2.4x+4^2}{32}=\left(\dfrac{4x+16-4x+16}{x^2-16}\right)\dfrac{\left(x+4\right)^2}{32}=\left(\dfrac{32}{x^2-16}\right)\dfrac{\left(x+4\right)^2}{32}=\dfrac{32\left(x+4\right)^2}{32.\left(x-4\right)\left(x+4\right)}=\dfrac{x+4}{x-4}\\ \\ \\ \\ \\ \\ b,Tacó\dfrac{x+4}{x-4}=\dfrac{1}{3}\Leftrightarrow3x+12=x-4\Leftrightarrow x=-8\left(TM\right)c,TAcó\dfrac{x+4}{x-4}=3\Leftrightarrow x+4=3x-12\Leftrightarrow x=8\left(TM\right)\)

6 tháng 7 2018
https://i.imgur.com/7S8xTCo.jpg
6 tháng 7 2018
https://i.imgur.com/2rCz0qH.jpg