K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 7 2021

a, \(A=\left|x-2017\right|+\left|2018-x\right|\ge\left|x-2017+2018-x\right|=1\)

Vậy \(Min=1\Leftrightarrow2017\le x\le2018\)

b, \(B=\dfrac{x^2+4+8}{x^2+4}=1+\dfrac{8}{x^2+4}\)

Thấy : \(x^2+4\ge4\)

\(\Rightarrow B=1+\dfrac{8}{x^2+4}\le3\)

Vậy \(Max=3\Leftrightarrow x=0\)

3 tháng 7 2021

là GTNN á

21 tháng 12 2017

\(A=2x^2-2\ge-2\)

Dấu "=" xảy ra khi: \(x=0\)

\(B=\left|x+\dfrac{1}{3}\right|-\dfrac{1}{6}\ge-\dfrac{1}{6}\)

Dấu "=" xảy ra khi: \(x=-\dfrac{1}{3}\)

\(C=\dfrac{\left|x\right|+2017}{2018}\ge\dfrac{2017}{2018}\)

Dấu "=" xảy ra khi: \(x=0\)

\(D=3-\left(x+1\right)^2\le3\)

Dấu "=" xảy ra khi: \(x=-1\)

\(E-\left|0,1+x\right|-1,9\le-1,9\)

Dấu "=" xảy ra khi: \(x=-0,1\)

\(F=\dfrac{1}{\left|x\right|+2017}\le\dfrac{1}{2017}\)

Dấu "=" xảy ra khi: \(x=0\)

trả lời giúp mk với 

7 tháng 8 2016

chịu , hổng bt lun ak

31 tháng 3 2017

2.

a/\(A=5-I2x-1I\)

Ta thấy: \(I2x-1I\ge0,\forall x\)

nên\(5-I2x-1I\le5\)

\(A=5\)

\(\Leftrightarrow5-I2x-1I=5\)

\(\Leftrightarrow I2x-1I=0\)

\(\Leftrightarrow2x=1\)

\(\Leftrightarrow x=\frac{1}{2}\)

Vậy GTLN của \(A=5\Leftrightarrow x=\frac{1}{2}\)

b/\(B=\frac{1}{Ix-2I+3}\)

Ta thấy : \(Ix-2I\ge0,\forall x\)

nên \(Ix-2I+3\ge3,\forall x\)

\(\Rightarrow B=\frac{1}{Ix-2I+3}\le\frac{1}{3}\)

\(B=\frac{1}{3}\)

\(\Leftrightarrow B=\frac{1}{Ix-2I+3}=\frac{1}{3}\)

\(\Leftrightarrow Ix-2I+3=3\)

\(\Leftrightarrow Ix-2I=0\)

\(\Leftrightarrow x=2\)

Vậy GTLN của\(A=\frac{1}{3}\Leftrightarrow x=2\)

1 tháng 11 2018

1. a, \(2^{x+2}.3^{x+1}.5^x=10800\)

\(2^x.2^2.3^x.3.5^x=10800\)

\(\Rightarrow\left(2.3.5\right)^x.12=10800\)

\(\Rightarrow30^x=\frac{10800}{12}=900\)

\(\Rightarrow30^x=30^2\)

\(\Rightarrow x=2\)

b,\(3^{x+2}-3^x=24\)

\(\Rightarrow3^x\left(3^2-1\right)=24\)

\(\Rightarrow3^x.8=24\)\(\Rightarrow3^x=3^1\Rightarrow x=1\)

2, c, Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)

Dấu bằng xảy ra khi \(ab\ge0\)

Ta có: \(\left|x-2017\right|=\left|2017-x\right|\)

 \(\Rightarrow\left|x-1\right|+\left|2017-x\right|\ge\left|x-1+2017-x\right|\)\(=\left|2016\right|=2016\)

Dấu bằng xảy ra khi \(\left(x-1\right)\left(2017-x\right)\ge0\)\(\Rightarrow2017\ge x\ge1\)

Vậy \(Min_{BT}=2016\)khi \(2017\ge x\ge1\)

d, Áp dụng BĐT \(\left|a\right|-\left|b\right|\le\left|a-b\right|\forall a,b\inℝ\)

Dấu bằng xảy ra khi \(b\left(a-b\right)\ge0\)

Ta có \(B=\left|x-2018\right|-\left|x-2017\right|\le\left|x-2018-x+2017\right|\)

\(\Rightarrow B\le1\)

Dấu bằng xảy ra khi \(\left(x-2017\right)\left[\left(x-2018\right)-\left(x-2017\right)\right]\ge0\)

\(\Rightarrow x\le2017\)

Vậy \(Max_B=1\) khi \(x\le2017\)

1 tháng 11 2018

để BT \(\frac{5}{\sqrt{2x+1}+2}\) nguyên thì \(\sqrt{2x+1}+2\inƯ\left(5\right)\)

suy ra \(\sqrt{2x+1}+2\in\left\{-5;-1;1;5\right\}\)

\(\Rightarrow\sqrt{2x+1}\in\left\{-7;-3;-1;3\right\}\)

Mà \(\sqrt{2x+1}\ge0\) nên \(\sqrt{2x+1}\)chỉ có thể bằng 3

\(\Rightarrow2x+1=9\Rightarrow x=4\)( thỏa mãn điều kiện \(x\ge-\frac{1}{2}\))

Đây là cách lớp 9. Mk đang phân vân ko biết giải theo cách lớp 7 thế nào!!!!

21 tháng 10 2017

a. Để A có giá trị nhỏ nhất thì \(\left|x-\dfrac{3}{4}\right|=0\)

\(\left|x-\dfrac{3}{4}\right|=0\Rightarrow x-\dfrac{3}{4}=0\Rightarrow x=\dfrac{3}{4}\)

Vậy A có giá trj nhỏ nhất khi \(x=\dfrac{3}{4}\)

1 tháng 8 2019

Tìm GTNN

Ta có: A = |x - 1| + |x - 4|

=>  A = |x - 1| + |4 - x| \(\ge\)|x - 1 + 4 - x| = |3| = 3

=> A \(\ge\)3

Dấu "=" xảy ra <=> (x - 1)(x - 4) \(\ge\)0

<=> \(1\le x\le4\)

Vậy Min A = 3 <=> \(1\le x\le4\)

Tìm GTLN

Ta có: -|x + 2| \(\le\)\(\forall\)x

hay A  \(\le\)\(\forall\)x

Dấu "=" xảy ra <=> x + 2 = 0 <=> x = -2

Vậy Max A = 0 <=> x = -2

ta có

\(A=\left|x-2018\right|-\left|x-2017\right|\le\left|x-2018-x-2017\right|=1\)

dấu bằng xảy ra khi (x-2017)(x-2018)\(\ge\)0

bn tự làm tiếp

31 tháng 10 2017

a, Để A lớn nhất thì \(\left(x+\frac{1}{2}\right)^2\) phải nhỏ nhất

Mà \(\left(x+\frac{1}{2}\right)^2>=0\)

\(\Rightarrow\left(x+\frac{1}{2}\right)^2=0\)

\(\Rightarrow A=3,5-\left(x+\frac{1}{2}\right)^2\)có giá trị lớn nhất là 3,5

b, Để B đạt giá trị nhỏ nhất thì \(8-\left(x+\frac{1}{3}\right)^2\)phải lớn nhất

\(8-\left(x+\frac{1}{3}\right)^2\)lớn nhất thì \(\left(x+\frac{1}{3}\right)^2\)nhỏ nhất

tương tự câu a ta có \(\left(x+\frac{1}{3}\right)^2=0\Rightarrow\)\(8-\left(x+\frac{1}{3}\right)^2=8\)

\(\Rightarrow B=\frac{3}{8-\left(x+\frac{1}{3}\right)^2}\)đạt giá trị nhỏ nhất là \(\frac{3}{8}\)

31 tháng 10 2017

đi mà tra goole