Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(y=2cos\left(\frac{\pi}{14}\right)cos\left(x-\frac{\pi}{14}\right)\)
Do \(-1\le cos\left(x-\frac{\pi}{14}\right)\le1\) với mọi x
\(\Rightarrow-2cos\left(\frac{\pi}{14}\right)\le y\le2cos\left(\frac{\pi}{14}\right)\)
\(y_{min}=-2cos\left(\frac{\pi}{14}\right)\) khi \(cos\left(x-\frac{\pi}{14}\right)=-1\)
\(y_{max}=2cos\left(\frac{\pi}{14}\right)\) khi \(cos\left(x-\frac{\pi}{14}\right)=1\)
b/ \(y=\sqrt{3}cos2x-\frac{1}{2}sin2x=\frac{\sqrt{13}}{2}\left(\frac{2\sqrt{39}}{13}cos2x-\frac{\sqrt{13}}{13}sin2x\right)\)
\(\Rightarrow y=\frac{\sqrt{13}}{2}cos\left(2x+a\right)\) với \(a\in\left(0;\pi\right)\) sao cho \(cosa=\frac{2\sqrt{39}}{13}\)
Do \(-1\le cos\left(2x+a\right)\le1\Rightarrow-\frac{\sqrt{13}}{2}\le y\le\frac{\sqrt{13}}{2}\)
c/ \(y=4sin^2x+4sinx+1+4cos^2x-4\sqrt{3}cosx+3\)
\(=8+4sinx-4\sqrt{3}cosx=8+8\left(\frac{1}{2}sinx-\frac{\sqrt{3}}{2}cosx\right)\)
\(=8+8sin\left(x-\frac{\pi}{3}\right)\)
Do \(-1\le sin\left(x-\frac{\pi}{3}\right)\le1\Rightarrow0\le y\le16\)
\(y=1-sin^2x+sinx+1=-sin^2x+sinx+2\)
\(\Rightarrow y=-\left(sinx-\frac{1}{2}\right)^2+\frac{9}{4}\le\frac{9}{4}\)
\(\Rightarrow y_{max}=\frac{9}{4}\) khi \(sinx=\frac{1}{2}\)
\(y=\left(sinx+1\right)\left(2-sinx\right)\)
Do \(-1\le sinx\le1\Rightarrow\left\{{}\begin{matrix}sinx+1\ge0\\2-sinx>0\end{matrix}\right.\)
\(\Rightarrow y=\left(sinx+1\right)\left(2-sinx\right)\ge0\)
\(\Rightarrow y_{min}=0\) khi \(sinx=-1\)
a/ \(-1\le sin3x\le1\Rightarrow-1\le y\le3\)
\(y_{min}=-1\) khi \(sin3x=-1\)
\(y_{max}=3\) khi \(sin3x=1\)
b/ \(0\le cos^22x\le1\Rightarrow1\le y\le2\)
\(y_{min}=1\) khi \(cos^22x=0\)
\(y_{max}=3\) khi \(cos^22x=1\)
c/ \(y=\sqrt{2}sin\left(x+\frac{\pi}{4}\right)+2\Rightarrow-\sqrt{2}+2\le y\le\sqrt{2}+2\)
\(y_{min}=-\sqrt{2}+2\) khi \(sin\left(x+\frac{\pi}{4}\right)=-1\)
\(y_{max}=\sqrt{2}+2\) khi \(sin\left(x+\frac{\pi}{4}\right)=1\)
d/ \(y=3cosx-\left(2cos^2x-1\right)+5=-2cos^2x+3cosx+6\)
\(y=-2\left(cosx-\frac{3}{4}\right)^2+\frac{57}{8}\le\frac{57}{8}\)
\(y_{max}=\frac{57}{8}\) khi \(cosx=\frac{3}{4}\)
\(y=\left(cosx+1\right)\left(-2cosx+5\right)+1\ge1\)
\(y_{min}=1\) khi \(cosx=-1\)