K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 7 2019

\(A=\left|x+\frac{3}{2}\right|\)

Vì \(\left|x+\frac{3}{2}\right|\ge0\)

Vậy \(GTNN_A=0\)tại \(x=\frac{-3}{2}\)

\(B=\left|x-\frac{1}{2}\right|+\frac{3}{4}\)

Vì \(\left|x-\frac{1}{2}\right|\ge0\)nên \(\left|x-\frac{1}{2}\right|+\frac{3}{4}\ge\frac{3}{4}\)

Vậy \(GTNN_B=\frac{3}{4}\)tại \(x=\frac{1}{2}\)

1 tháng 7 2019

\(A=\left|x+\frac{3}{2}\right|=x+\frac{3}{2}\)

12 tháng 7 2021

a

C= |x-1| + |x-5|

Do x-1 + x-5 luôn > 0

=> x-1 + x-5 = 0

=> 2x -6 = 0

=> 2x = 6

=> x = 3

12 tháng 7 2021

mình ghi nhầm, lớn hơn hoặc bằng 0 nha

14 tháng 8 2020

Các bài này em áp dụng công thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\). Dấu "=" xảy ra khi tích \(a.b\ge0\),

a) Ta có : \(x-y=3\Rightarrow x=3+y\).

Do đó : \(B=\left|x-6\right|+\left|y+1\right|\)

\(=\left|3+y-6\right|+\left|y+1\right|=\left|3-y\right|+\left|y+1\right|\)

\(\ge\left|3-y+y+1\right|=4\)

Dấu "=" xảy ra \(\Leftrightarrow\left(3-y\right)\left(y+1\right)\ge0\)

\(\Leftrightarrow\hept{\begin{cases}-1\le y\le3\\2\le x\le6\end{cases},x-y=3}\)

Vậy giá trị nhỏ nhất của \(B=4\) \(\Leftrightarrow\hept{\begin{cases}-1\le y\le3\\2\le x\le6\end{cases},x-y=3}\)

b) Ta có : \(x-y=2\Rightarrow x=2+y\)

Do đó \(C=\left|2x+1\right|+\left|2y+1\right|\)

\(=\left|2y+5\right|+\left|2y+1\right|=\left|-2y-5\right|+\left|2y+1\right|\)

\(\ge\left|-2y-5+2y+1\right|=4\)

Các câu khác tương tự nhé em !

14 tháng 8 2020

Làm nốt câu c

                                                  Bài giải

c, Ta có : 

\(D=\left|2x+3\right|+\left|y+2\right|+2\ge\left|2x+3+y+2\right|+2=\left|3+3+2\right|+2=8+2=10\)

Dấu " = " xảy ra khi \(2x+y=3\)

Vậy \(\text{​​Khi }2x+y=3\text{​​ }Min_D=10\)

15 tháng 9 2016

a) Ta có :

\(\left|3,7-x\right|\ge0\)

\(\Rightarrow\left|3,7-x\right|+2,5\ge2,5\)

Dấu " = " xảy ra khi x = -3 , 7

Vậy MINA= 2 , 5 khi x = -3 , 7

b) Ta có :

\(\left|x+1,5\right|\ge0\)

\(\Rightarrow\left|x+1,5\right|-4,5\ge-4,5\)

Dấu " = " xảy ra khi x = - 1.5

Vậy MINB= - 4 , 5 khi x = - 1 , 5

c)

Ta có 

\(\left|x+1,1\right|\ge0\)

\(\Rightarrow-\left|x+1,1\right|\le0\)

\(\Rightarrow1,5-\left|x+1,1\right|\le1,5\)

Dấu " = " xảy ra khi x = - 1 , 1

Vậy MAXC= 1,5 khi x = - 1 , 1

d)

Ta có :

\(\left|1,7-x\right|\ge0\)

\(\Rightarrow-\left|1,7-x\right|\le0\)

\(\Rightarrow-3,7-\left|1,7-x\right|\le-3,7\)

Dấu " = " xảy ra khi x = 1,7

Vậy MAXD= - 3 , 7 khi x = 1,7

29 tháng 10 2016

GTNN A= 2 khi x=2016

10 tháng 9 2017

a, Ta có: \(A=\left|x+2\right|+\left|9-x\right|\ge\left|X+2+9-x\right|=11\)

Dấu "=' xảy ra khi \(\left(x+2\right)\left(9-x\right)\ge0\Leftrightarrow-2\le x\le9\)

Vậy MinA = 11 khi -2 =< x =< 9

b, Vì \(\left(x-1\right)^2\ge0\Rightarrow-\left(x-1\right)^2\le0\Rightarrow B=\frac{3}{4}-\left(x-1\right)^2\le\frac{3}{4}\)

Dấu "=" xảy ra khi x = 1

Vậy MaxB = 3/4 khi x=1

10 tháng 9 2017

Ta có :\(A=\left|x+2\right|+\left|9-x\right|\ge\left|x+2+9-x\right|=11\)

Vậy \(A_{min}=11\) khi \(2\le x\le9\)

2 tháng 7 2019

\(a,A=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)-2018\)

\(=\left(x^2+5x-6\right)\left(x^2+5x+6\right)-2018\)

Đặt \(x^2+5x=a\)

\(\Rightarrow A=\left(a-6\right)\left(a+6\right)-2018=a^2-2054\)

\(\Rightarrow A_{min}=2054\Leftrightarrow a=0\)

\(\Rightarrow x^2+5x=0\Leftrightarrow x\left(x+5\right)=0\)

\(\Leftrightarrow x\in\left\{0;-5\right\}\)

2 tháng 7 2019

\(b,B=\left(x-1\right)\left(x-4\right)\left(x-5\right)\left(x-8\right)+2018.\)

\(=\left(x^2-9x+8\right)\left(x^2-9x+20\right)+2018\)

Đặt \(x^2-9x+14=a\)

\(\Rightarrow B=\left(a-6\right)\left(a+6\right)+2018\)

\(=a^2-36+2018=a^2+1982\)

\(\Rightarrow B_{min}=1982\Leftrightarrow a^2=0\Rightarrow a=0\)

\(\Rightarrow x^2-9x+14=0\)

\(\Rightarrow x^2-2x-7x+14=0\)

\(\Leftrightarrow x\left(x-2\right)-7\left(x-2\right)=0\)

\(\Rightarrow\left(x-2\right)\left(x-7\right)=0\)

\(\Rightarrow x\in\left\{2;7\right\}\)