Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\left(x-y\right)^2\ge0\Leftrightarrow x^2+y^2\ge2xy\Leftrightarrow2\left(x^2+y^2\right)\ge x^2+2xy+y^2\)
\(\Leftrightarrow x^2+y^2\ge\frac{1}{2}\left(x+y\right)^2=\frac{1}{2}.10=5\)
Vậy MIN P = 5 khi x = y = \(\frac{\sqrt{10}}{2}\)
Áp dụng BĐT Minicopski ta có:
\(T=\sqrt{x^4+\frac{1}{x^4}}+\sqrt{y^2+\frac{1}{y^2}}\ge\sqrt{\left(x^2+y\right)^2+\left(\frac{1}{x^2}+\frac{1}{y}\right)^2}\)
\(\ge\sqrt{1^2+\left(\frac{4}{x^2+y}\right)^2}=\sqrt{1+\left(\frac{4}{1}\right)^2}=\sqrt{17}\)
Nên GTNN của T là \(\sqrt{17}\) khi \(\hept{\begin{cases}x=\sqrt{\frac{1}{2}}\\y=\frac{1}{2}\end{cases}}\)
a)+) \(A=\sqrt{2x^2-3x+1}=\sqrt{2x^2-2x-x+1}\)
\(=\sqrt{2x\left(x-1\right)-\left(x-1\right)}=\sqrt{\left(2x-1\right)\left(x-1\right)}\)
Để A có nghĩa thì \(\hept{\begin{cases}2x-1\ge0\\x-1\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge\frac{1}{2}\\x\ge1\end{cases}}\Leftrightarrow x\ge1\)
hoặc \(\hept{\begin{cases}2x-1\le0\\x-1\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le\frac{1}{2}\\x\le1\end{cases}}\Leftrightarrow x\le\frac{1}{2}\)
A có nghĩa\(\Leftrightarrow\orbr{\begin{cases}x\ge1\\x\le\frac{1}{2}\end{cases}}\)
+) B có nghĩa\(\Leftrightarrow\hept{\begin{cases}x-1\ge0\\2x-1\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge1\\x\ge\frac{1}{2}\end{cases}}\Leftrightarrow x\ge1\)
c) \(A=B\Leftrightarrow\sqrt{\left(x-1\right)\left(2x-1\right)}=\sqrt{x-1}.\sqrt{2x-1}\)
\(\Leftrightarrow\hept{\begin{cases}x-1\ge0\\2x-1\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge1\\x\ge\frac{1}{2}\end{cases}}\Leftrightarrow x\ge1\)
Vậy \(x\ge1\)thì A = B
d) \(x\le\frac{1}{2}\)
a) Ta có:
\(\dfrac{1}{\sqrt{n}+\sqrt{n+1}}=\dfrac{\sqrt{n}-\sqrt{n+1}}{n-n-1}=-\sqrt{n}+\sqrt{n+1}\)
\(\Rightarrow A=...=-1+\sqrt{2}-\sqrt{2}+\sqrt{3}-...-\sqrt{48}+\sqrt{49}=-1+7=6\)
Đặt \(A=x^2-x\sqrt{y}+x+y-\sqrt{y}+1\left(y\ge0\right)\Rightarrow4A=4x^2-4x\sqrt{y}+4x+4y-4\sqrt{y}+4\)
\(4A=\left(2x\right)^2-4x\left(\sqrt{y}-1\right)+\left(\sqrt{y}-1\right)^2-\left(\sqrt{y}-1\right)^2+4y-4\sqrt{y}+4\)
\(=\left(2x-\sqrt{y}+1\right)^2+3y-2\sqrt{y}+3\)
Ta có \(\left(2x-\sqrt{y}+1\right)^2\ge0,\forall x;y\ge0\)
\(3y-2\sqrt{y}+3=3\left(y-\frac{2}{3}\sqrt{y}+1\right)=3\left[\left(y-2\sqrt{y}\frac{1}{3}+\frac{1}{9}\right)+\frac{8}{9}\right]=3\left(\sqrt{y}-\frac{1}{3}\right)^2+\frac{8}{3}\ge\frac{8}{3}\)
Do đó \(4A\ge\frac{8}{3}\Leftrightarrow A\ge\frac{2}{3}\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\sqrt{y}=\frac{1}{3}\\2x-\sqrt{y}+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}y=\frac{1}{9}\\x=-\frac{1}{3}\end{cases}}}\)