K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 9 2018

\(A=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)

\(\Leftrightarrow A=\left[\left(x-1\right)\left(x+6\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]\)

\(\Leftrightarrow A=\left(x^2-x+6x-6\right)\left(x^2+2x+3x+6\right)\)

\(\Leftrightarrow A=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)

\(\Leftrightarrow A=\left(x^2+5x\right)^2-36\ge-36\forall x\)

Dấu " = " xảy ra

\(\Leftrightarrow x^2+5x=0\Leftrightarrow x\left(x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)

Vậy GTNN của A là : \(-36\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)

2 tháng 1 2016

Đặt x = 4 - m; y = 4 + m 

=> x2 + y2 = (4 - m)2 + (4 + m)2 = 16 - 8m + m2 + 16 + 8m + m2 = 32 + 2m2

Vì m2 >= 0 => 2m2 >= 0 

=> 32 + 2m2 >= 32

Dấu bằng xảy ra khi: m2 = 0 => m = 0

Vậy x2 + y2min = 32 <=> x = y = 4

2 tháng 1 2016

Ta có:  \(x+y=4\)   \(\Rightarrow\)  \(y=4-x\)

Do đó:  \(A=x^2+y^2=x^2+\left(4-x\right)^2=x^2+16-8x+x^2=2x^2-8x+16=2\left(x^2-4x+4\right)+8\)

\(A=2\left(x-2\right)^2+8\ge8\)  với mọi  \(x;y\)

Dấu  \("="\)  xảy ra   \(\Leftrightarrow\)  \(\left(x-2\right)^2=0\)

                               \(\Leftrightarrow\)  \(x-2=0\)

                               \(\Leftrightarrow\)  \(x=2\) 

\(\Rightarrow\)  \(y=2\)  (do  \(x+y=4\) )

Vậy,   \(Min\)  \(A=8\)  \(\Leftrightarrow\)  \(x=y=2\)

27 tháng 7 2017

\(P=\frac{x^2-2x+1989}{x^2}\)

\(\Leftrightarrow Px^2=x^2-2x+1989\)

\(\Leftrightarrow x^2\left(1-P\right)-2x+1989=0\)

\(\Delta=4-4\left(1-P\right)1989\ge0\)

\(\Leftrightarrow P\ge\frac{1988}{1989}\)có GTNN là \(\frac{1988}{1989}\)

Dấu "=" xảy ra \(\Leftrightarrow x=1989\)

Vậy \(P_{min}=\frac{1988}{1989}\) tại x = 1989

14 tháng 12 2016

Bài 1:

\(x^2-x+1=x^2-x+\frac{1}{4}+\frac{3}{4}\)

\(=\left(x^2-x+\frac{1}{4}\right)+\frac{3}{4}\)

\(=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Dấu "=" khi \(x=\frac{1}{2}\)

Vậy \(Min=\frac{3}{4}\) khi \(x=\frac{1}{2}\)

Bài 2:

\(x^2+10x+2041=x^2+10x+25+2016\)

\(=\left(x^2+10x+25\right)+2016\)

\(=\left(x+5\right)^2+2016\ge2016\)

Dấu "=" khi \(x=-5\)

Vậy \(Min=2016\) khi \(x=-5\)

14 tháng 12 2016

nhìn là bit tu lam