K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(P=\left(\dfrac{2+\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\dfrac{\sqrt{x}+1-\sqrt{x}}{\sqrt{x}+1}\)

\(=\dfrac{1}{\sqrt{x}-1}\cdot\dfrac{\sqrt{x}+1}{1}=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)

b: Để P nguyên thì \(\sqrt{x}+1⋮\sqrt{x}-1\)

\(\Leftrightarrow\sqrt{x}-1\in\left\{-1;1;2\right\}\)

hay \(x\in\left\{0;4;9\right\}\)

13 tháng 5 2021

`P=\sqrt{1-x}+\sqrt{1+x}+2\sqrtx(0<=x<=1)`
Áp dụng BĐT `\sqrta+\sqrtb>=\sqrt{a+b}`
`=>\sqrt{1-x}+\sqrt{x}>=1`
`=>P>=1+\sqrtx+\sqrt{x+1}>=1+0+1=2`
Dấu "=" `<=>x=0`

NV
2 tháng 8 2021

\(P=\dfrac{\sqrt{x}+1+\sqrt{x}}{\sqrt{x}+1}=1+\dfrac{\sqrt{x}}{\sqrt{x}+1}\)

Do \(\dfrac{\sqrt{x}}{\sqrt{x}+1}\ge0\) ; \(\forall x\ge0\)

\(\Rightarrow P\ge1\)

\(P_{min}=1\) khi \(x=0\)

2 tháng 8 2021

đk \(x\ge0,\)\(< =>P=2+\dfrac{-1}{\sqrt{x}+1}\ge2-1=1\)

dấu"=" xảy ra<=>x=0(tm)

14 tháng 10 2021

\(a,P=\dfrac{x+\sqrt{x}+3\sqrt{x}-3-6\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\left(x\ge0;x\ne1\right)\\ P=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\\ b,P=-1\Leftrightarrow\sqrt{x}-1=-\sqrt{x}-1\\ \Leftrightarrow2\sqrt{x}=0\Leftrightarrow x=0\left(tm\right)\\ c,P\in Z\Leftrightarrow\dfrac{\sqrt{x}+1-2}{\sqrt{x}+1}=1-\dfrac{2}{\sqrt{x}+1}\in Z\\ \Leftrightarrow\sqrt{x}+1\inƯ\left(2\right)=\left\{1;2\right\}\left(\sqrt{x}+1\ge1\right)\\ \Leftrightarrow\sqrt{x}=0\left(x\ne1\right)\\ \Leftrightarrow x=0\)

\(d,P=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}=1-\dfrac{2}{\sqrt{x}+1}< 1\left(\dfrac{2}{\sqrt{x}+1}>0\right)\\ e,P=1-\dfrac{2}{\sqrt{x}+1}\\ \sqrt{x}+1\ge1\Leftrightarrow-\dfrac{2}{\sqrt{x}+1}\ge-\dfrac{2}{1}=-2\\ \Leftrightarrow P=1-\dfrac{2}{\sqrt{x}+1}\ge1-\left(-2\right)=3\)

Dấu \("="\Leftrightarrow x=0\)

14 tháng 10 2021

a) ĐKXĐ: \(x\ge0,x\ne1\)

\(P=\dfrac{x+\sqrt{x}+3\sqrt{x}-3-6\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)

b) \(P=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}=-1\)

\(\Leftrightarrow-\sqrt{x}-1=\sqrt{x}-1\Leftrightarrow2\sqrt{x}=0\Leftrightarrow x=0\left(tm\right)\)

c) \(P=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}=1-\dfrac{2}{\sqrt{x}+1}\in Z\)

\(\Leftrightarrow\sqrt{x}+1\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\)

Kết hợp đk:

\(\Leftrightarrow x\in\left\{0\right\}\)

d) \(P=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}=1-\dfrac{2}{\sqrt{x}+1}< 1\)

e) \(P=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}=1-\dfrac{2}{\sqrt{x}+1}\)

Do \(\sqrt{x}+1\ge1\Leftrightarrow-\dfrac{2}{\sqrt{x}+1}\ge-2\)

\(\Leftrightarrow P=1-\dfrac{2}{\sqrt{x}+1}\ge1-2=-1\)

\(minP=-1\Leftrightarrow x=0\)

25 tháng 5 2019

Công thức trên ghi sai, Công thức đúng như dưới đây:

\(S=\frac{x+y}{\sqrt{x\left(2x+y\right)}+\sqrt{y\left(2y+x\right)}}\)

26 tháng 5 2019

\(S=\frac{x+y}{\sqrt{x\left(2x+y\right)}+\sqrt{y\left(2y+x\right)}}\)

\(S=\frac{x+y}{\sqrt{x\left(2x+y\right)}.1+\sqrt{y\left(2y+x\right)}.1}\)

\(S\ge\frac{x+y}{\frac{3x+y}{2}+\frac{3y+x}{2}}=\frac{2\left(x+y\right)}{4\left(x+y\right)}=\frac{1}{2}\)(BĐT cosi)

Vậy Min = 1/2 <=> x = y

25 tháng 5 2019

Nhờ giải giúp, công thức trên ghi sai, công thức đúng như dưới đây

S = \(\frac{x+y}{\sqrt{x\left(2x+y\right)}+\sqrt{y\left(2y+x\right)}}\)

18 tháng 7 2021

ĐKXĐ: \(x\ge0\)

\(P=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}=\dfrac{\sqrt{x}+1-2}{\sqrt{x}+1}=1-\dfrac{2}{\sqrt{x}+1}\)

Ta có: \(\sqrt{x}\ge0\Rightarrow\sqrt{x}+1\ge1\Rightarrow\dfrac{2}{\sqrt{x}+1}\le2\Rightarrow1-\dfrac{2}{\sqrt{x}+1}\ge-1\)

\(\Rightarrow P_{min}=-1\) khi \(x=0\)