Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
f(x) = x3 +3/x = x3 + 1/x +1/x +1/x
cô si 4 số làm mất x là xong
\(f\left(x\right)=\dfrac{4}{x}+\dfrac{x-1+1}{1-x}=\dfrac{4}{x}+\dfrac{1}{1-x}-1\)
\(f\left(x\right)\ge\dfrac{\left(2+1\right)^2}{x+1-x}-1=8\)
\(f\left(x\right)_{min}=8\) khi \(x=\dfrac{2}{3}\)
Vì x > 0 nên \(\frac{x}{3}>0,\frac{9}{x}>0\)
Áp dụng BĐT Cauchy cho 2 số dương, ta được:
\(\frac{x}{3}+\frac{9}{x}\ge2\sqrt{\frac{x}{3}.\frac{9}{x}}=2\sqrt{3}\)
Đẳng thức xảy ra khi \(x^2=27\Leftrightarrow x=3\sqrt{3}\)(Vì x > 0)
ta có: \(f_{\left(x\right)}=\frac{x}{2}+\frac{2}{x-1}=\frac{x-1}{2}+\frac{2}{x-1}+\frac{1}{2}\)
AD cô-si ta được \(\frac{x-1}{2}+\frac{2}{x-1}\ge2\)( dấu "=" xảy ra khi x=3)
=> \(f_{\left(x\right)}\ge2+\frac{1}{2}=\frac{5}{2}\)
=> Min f(x) =5/2 tại x =3