Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=x^2-4x+5\)
=\(\left(x^2-4x+4\right)+1\)
\(=\left(x+2\right)^2+1\)
Do \(\left(x+2\right)^2\ge0\forall x\)
=>\(\left(x+2\right)^2+1\ge1\forall x\)
=> \(A\ge1\forall x\)
Dấu = xảy ra khi:
\(\left(x+2\right)^2=0\)
<=> \(x+2=0\)
<=>\(x=-2\)
Vậy Amin \(\ge\) 1 khi \(x=-2\)
\(B=2x^2+4x+5\)
\(=\left(x^2+2x+1\right)+\left(x^2+2x+1\right)+3\)
\(=\left(x+1\right)^2+\left(x+1\right)^2+3\)
Do \(\left(x+1\right)^2\ge0\forall x\)
=>\(\left(x+1\right)^2+\left(x+1\right)^2+3\ge3\forall x\)
=> \(B\ge3\forall x\)
Dấu = xảy ra khi:
\(\left(x+1\right)^2=0\)
<=>\(x+1=0\)
<=> \(x=-1\)
Vậy \(B_{min}\) \(\ge3\)\(khi\)\(x=-1\)
Chúc bạn học tốt~!
Câu 1:
\(a,P=x^2-2x+5=\left(x^2-2x+1\right)+4\)
\(=\left(x-1\right)^2+4\ge4\forall x\)
Vậy Min \(P=4\) khi \(x-1=0\Rightarrow x=1\)
\(b,Q=2x^2-6x=2\left(x^2-\dfrac{3}{2}x+\dfrac{9}{4}\right)-\dfrac{9}{2}\)
\(=2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\forall x\)
Vậy \(MinQ=-\dfrac{9}{2}\) khi \(x-\dfrac{3}{2}=0\Rightarrow x=\dfrac{3}{2}\)
\(c,M=x^2+y^2-x+6y+10\)
\(=\left(x^2-x+\dfrac{1}{4}\right)+\left(y^2+9y+9\right)+\dfrac{3}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)
Vậy Min \(M=\dfrac{3}{4}\) khi \(\left\{{}\begin{matrix}x-\dfrac{1}{2}=0\\y+3=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\x=-3\end{matrix}\right.\)
Câu b mình viết nhầm dấu \(\ge\)đáng lẽ đúng phải là \(\le\)
a)
\(A=x^2+y^2-x+6y+10.\)
\(=\left(x^2-x+\frac{1}{4}\right)+\left(y^2+6y+9\right)+\frac{3}{4}\)
\(=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Vậy \(MinA=\frac{3}{4}\Leftrightarrow\hept{\begin{cases}\left(x-\frac{1}{2}\right)^2=0\\\left(y+3\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-\frac{1}{2}=0\\y+3=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{1}{2}\\y=-3\end{cases}}}\)
b)
\(B=2x-2x^2-5\)
\(=-2\left(x^2-x+\frac{1}{4}\right)+2.\frac{1}{4}-5\)
\(=-2\left(x-\frac{1}{2}\right)^2-\frac{9}{2}\ge-\frac{9}{2}\)
Vậy \(MaxB=-\frac{9}{2}\Leftrightarrow\left(x-\frac{1}{2}\right)^2=0\Leftrightarrow x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}\)
Tuy mk không biết làm nhưng mình sẽ đánh dấu bài này mk không cần bạn k nhưng bạn k trong các câu khác nha.
Chưa có ai trả lời câu hỏi này, hãy gửi một câu trả lời để giúp Trang Nhung giải bài toán này.
Đặt \(A=x^2-3x\)
\(A=\left(x^2-3x+\frac{9}{4}\right)-\frac{9}{4}\)
\(A=\left(x-\frac{3}{2}\right)^2-\frac{9}{4}\)
Mà \(\left(x-\frac{3}{2}\right)^2\ge0\forall x\)
\(\Rightarrow A\ge-\frac{9}{4}\)
Dấu "=" xảy ra khi : \(x-\frac{3}{2}=0\Leftrightarrow x=\frac{3}{2}\)
Vậy \(A_{Min}=-\frac{9}{4}\Leftrightarrow x=\frac{3}{2}\)
Đặt \(B=-x^2-2x\)
\(-B=x^2+2x\)
\(-B=\left(x^2+2x+1\right)-1\)
\(-B=\left(x+1\right)^2-1\)
Mà \(\left(x+1\right)^2\ge0\forall x\)
\(\Rightarrow-B\ge-1\Leftrightarrow B\le1\)
Dấu "=" xảy ra khi : \(x+1=0\Leftrightarrow x=-1\)
Vậy \(B_{Max}=1\Leftrightarrow x=-1\)
\(^{x^2-2x+5}\)=\(\left(x^2-2x+4\right)+1\)=\(\left(x-2\right)^2+1\)
có \(\left(x-1\right)^2\)\(\ge\)0 vs mọi x
=>(\(\left(x-1\right)^2+1\)\(\ge\)1 vs mọi x
=>Giá trị nhỏ nhất của đa thức =1<=>x-1=0<=>x=1
vậy giá trị nhỏ nhất của x^2-2x+5 là 1<=>x=1
Bạn dưới nhầm rùi kìa !!!!
\(P=x^2-2x+5=\left(x^2-2x+1\right)+4=\left(x-1\right)^2+4\ge4\)
P có GTNN là 4 tại x = 1 nha
\(P=x^2-2x+5\)
\(=x^2-2x+1+4\)
\(=\left(x-1\right)^2+4\ge4\forall x\)
Dấu '=' xảy ra khi x=1
P=X^2-2.x.1+1+4
P=(x-1)^2+4
Vì (x-1)^2 luôn > hoặc =0 với mọi x
=> (x-1)^2 +4 > hoặc = 0+4
=>GTNN của P là 4 khi x-1=0
X=1
Mik là người mới mik ko bt viết có j thông cảm ạ