Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(-5x^2+x-7=-5\left(x^2-\frac{1}{5}x+\frac{7}{5}\right)=-5\left(x^2-2\cdot\frac{1}{10}\cdot x+\frac{1}{100}-\frac{1}{100}+\frac{7}{5}\right)\)
\(=-5\left(x-\frac{1}{10}\right)^2+\frac{139}{20}\)
\(-5\left(x-\frac{1}{10}\right)^2+\frac{139}{20}\le\frac{139}{20}\)
GTLN của đa thức trên là 139/20
b: \(x^2-x+1=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)
c: \(A=x^2-6x+9+2=\left(x-3\right)^2+2\ge2\forall x\)
Dấu '=' xảy ra khi x=3
d: \(B=-\left(x^2-4x+5\right)=-\left(x^2-4x+4+1\right)=-\left(x-2\right)^2-1\le-1\forall x\)
Dấu '=' xảy ra khi x=2
\(A=x^2+5x+7=x^2+2.x.\frac{5}{2}+\frac{25}{4}+\frac{3}{4}\)
\(A=\left(x+\frac{5}{2}\right)^2+\frac{3}{4}\)
Vì \(\left(x+\frac{5}{2}\right)^2\ge0\)với mọi x =>\(A\ge\frac{3}{4}\)
nên Min A=3/4 khi và chỉ khi \(\left(x+\frac{5}{2}\right)^2=0\Rightarrow x=-\frac{5}{2}\)
Vậy Min A=3/4 \(\Leftrightarrow\)x=-5/2
a,A=x^2+2.x.5/2+25/4+3/4
=(x+5/2)2+3/4
nx:(x+5/2)^2 luôn> hoặc = 0 nên (x+5/2)^2+3/4 >hoặc =3/4
vậy GTNN của A là 3/4
b,B=6x-x2-5
= - (x2-6x+5)
= - (x2-2.x.3+9-4)
=-[(x-3)2-4]
=-(x-3)^2+4
nx; -(x-3)^2 luôn nhỏ hơn hoặc bằng 0 nên -(x-3)^2 +4 luôn < hoặc= 4
Vậy GTLN của B là 4
A=x^2+5x+7
A=x^2+2.x.5/2+25/4+3/4
A=(x+5/2)^2+3/4>= 3/4
Vậy Min A=3/4 <=> x=-5/2
ấ ở đây nhé !
Mình có làm bài tìm giá trị lớn nhất trong đây rùi nhé !
A = x2 - 5x + 7
= ( x2 - 5x + 25/4 ) + 3/4
= ( x - 5/2 )2 + 3/4 ≥ 3/4 ∀ x
Dấu "=" xảy ra khi x = 5/2
=> MinA = 3/4, đạt được khi x = 5/2