Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1 : a ) Ta có : \(A=\left|x-32\right|\ge0\)
\(\Rightarrow GTNN\) của \(A=0\)( khi đó x = 32 )
b) Để B đạt GTNN thì \(\left|x+2\right|\) đạt GTNN
Ta có : \(\left|x+2\right|\ge0\Leftrightarrow GTNN\) của \(\left|x+\right|=0\)( khi đo x = -2 )
\(\Rightarrow GTNN\) của B = 25
Câu 2 : a) Để A đạt GTNN thì \(\left|x\right|\) đạt GTNN
Mà \(\left|x\right|\ge0\Leftrightarrow GTNN\) của |x| = 0
Vậy GTNN của A bằng 2
b) Để B đạt GTNN thì \(\left|x+5\right|\) đạt GTNN
Mà \(\left|x+5\right|\ge0\Leftrightarrow GTNN\) của \(\left|x+5\right|=0\)( khi đó x = -5 )
Vậy GTNN của B bằng 21
c) Để B đạt GTNN thì \(\left(n-1\right)^2\) đạt GTNN
Mà \(\left(x-1\right)^2\ge0\Leftrightarrow GTNN\) của\(\left(n-1\right)^2=0\)( khi đó n = 1)
Vậy GTNN của C bằng 25
Câu 1 : a ) Ta có : A=|x−32|≥0
⇒GTNN của A=0( khi đó x = 32 )
b) Để B đạt GTNN thì |x+2| đạt GTNN
Ta có : |x+2|≥0⇔GTNN của |x+|=0( khi đo x = -2 )
⇒GTNN của B = 25
Câu 2 : a) Để A đạt GTNN thì |x| đạt GTNN
Mà |x|≥0⇔GTNN của |x| = 0
Vậy GTNN của A bằng 2
b) Để B đạt GTNN thì |x+5| đạt GTNN
Mà |x+5|≥0⇔GTNN của |x+5|=0( khi đó x = -5 )
Vậy GTNN của B bằng 21
c) Để B đạt GTNN thì (n−1)2 đạt GTNN
Mà (x−1)2≥0⇔GTNN của(n−1)2=0( khi đó n = 1)
Vậy GTNN của C bằng 25
Giá trị lớn nhất:
a) A=1
b) B=2015
Giá trị nhỏ nhất:
a) A=-1
b) B=-2
Bài giải
a, \(A=\left(x-2\right)^2+20\)
Do \(\left(x-2\right)^2\ge0\) Dấu "=" xảy ra khi \(\left(x-2\right)^2=0\text{ }\Rightarrow\text{ }x-2=0\text{ }\Rightarrow\text{ }x=2\)
\(\Rightarrow\text{ }\left(x-2\right)^2+20\ge20\)
Vậy \(GTNN\text{ của }A=20\text{ khi }x=2\)
b, \(B=\left|x+15\right|-26\)
Do \(\left|x+15\right|\ge0\) Dấu " = " xảy ra khi \(\left|x+15\right|=0\text{ }\Rightarrow\text{ }x+15=0\text{ }\Rightarrow\text{ }x=-15\)
\(\Rightarrow\text{ }\left|x+15\right|-26\ge-26\)
Vậy \(GTNN\text{ của }B=-26\text{ khi }x=-15\)
c, \(C=\left(x-12\right)^2+110\)
Do \(\left(x-12\right)^2\ge0\) Dấu "=" xảy ra khi \(\left(x-12\right)^2=0\text{ }\Rightarrow\text{ }x-12=0\text{ }\Rightarrow\text{ }x=12\)
\(\Rightarrow\text{ }\left(x-12\right)^2+110\ge110\)
Vậy \(GTNN\text{ của }A=110\text{ khi }x=12\)
a, A = (x - 2)^2 + 20
(x - 2)^2 > 0
=> (x - 2)^2 + 20 > 20
=> A > 20
xét A = 20 khi x - 2 = 0 => x = 2
vậy Min A = 20 khi x = 2
b, B = |x + 15| - 26
|x + 15| > 0
=> |x + 15| - 26 > 26
=> B > 26
xét B = 26 khi x + 15 = 0 => x = -15
vậy Min B = 26 khi x = - 15
c, tương tự A
\(A=\left(2x+6\right)^2+5\)
Đánh giá: \(\left(2x+6\right)^2\ge0\)
nên \(\left(2x+6\right)^2+5\ge5\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(2x+6=0\)\(\Leftrightarrow\)\(x=-3\)
Vậy MIN \(A=5\) \(\Leftrightarrow\)\(=-3\)
Ta có : (2x+6)^2 >= 0
=> A = (2x+6)^2+5 >= 0+5 = 5
Dấu "=" xảy ra <=> 2x+6=0 <=> x=-3
Vậy GTNN của A = 5 <=> x=-3
Tk mk nha