Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = x2 + 4x + 7
= ( x2 + 4x + 4 ) + 3
= ( x + 2 )2 + 3
( x + 2 )2 ≥ 0 ∀ x => ( x + 2 )2 + 3 ≥ 3
Đẳng thức xảy ra <=> x + 2 = 0 => x = -2
=> MinA = 3 <=> x = -2
B = 2x2 - 6x
= 2( x2 - 3x + 9/4 ) - 9/2
= 2( x - 3/2 )2 - 9/2
2( x - 3/2 )2 ≥ 0 ∀ x => 2( x - 3/2 )2 -9/2 ≥ -9/2
Đẳng thức xảy ra <=> x - 3/2 = 0 => x = 3/2
=> MinB = -9/2 <=> x = 3/2
C = -2x2 + 8x - 15
= -2( x2 - 4x + 4 ) - 7
= -2( x - 2 )2 - 7
-2( x - 2 )2 ≤ 0 ∀ x => -2( x - 2 )2 - 7 ≤ -7
Đẳng thức xảy ra <=> x - 2 = 0 => x = 2
=> MaxC = -7 <=> x = 2
Muốn viết tất cả các số tự nhiên từ 100 đến 999 phải dùng hết bao nhiên chữ số 5?
giải
ta có 100 chia hết cho 5
và số lớn nhất chia hết cho 5 trong dãy số này là:
995
vì cứ mỗi số chia hết cho 5 thì cách 5 đơn vị thì lại là một số chia hết cho 5
nên
từ 100-995 có số chữ số 5 là:
(995-100):5+1=180(số)
đáp số:180 số
đúng thì thanks mình nhé!
a)\(A=x^2-8x+9\)
\(A=x^2-8x+16-7\)
\(A=\left(x-4\right)^2-7\le-7\)
Dấu = xảy ra khi x - 4 = 0 ; x= 4
vậy Min A = -7 khi x =4
a) A = x2 - 6x + 13 = x2 - 2.x.3 + 33 +4 = (x-3)2 + 4 >= 4 suy ra minA=4
mấy câu kia giải tương tự
( x - 1) ( x + 6 ) ( x + 2 ) ( x + 3 )
<=> ( x2 + 6x - x - 6 ) ( x2 + 3x + 2x + 6)
<=> ( x2 - 5x )2 lun nhỏ hơn 0
Nên dấu " =" xảy ra khi ( x2- 5x)2 = 0
x2 - 5x= 0 <=> x ( x - 5) = 0 <=> x=0 hoặc 5
^^ Học tốt nha!!!!
a/ \(4x^2+4x+11\)
\(=\left(2x^2\right)+2\cdot2x+1-1+11\)
\(=\left(2x+1\right)^2-1+11\)
\(=\left(2x+1\right)^2+10\)
Có : \(\left(2x+1\right)^2\ge0\)
\(\Rightarrow\left(2x+1\right)^2+10\ge10\)
\(\Rightarrow GTNN\left(4x^2+4x+11\right)=10\)
Với \(\left(2x+1\right)^2=0;x=-\frac{1}{2}\)
\(a,A=4x^2+4x+11\)
\(A=(2x+1)^2+10\)
Do \((2x+1)^2\ge0\Rightarrow(2x+1)^2+10\ge10\forall x\)
\(\Rightarrow Min_a=10\Rightarrow2x+1=0\Rightarrow2x=-1\Leftrightarrow x=-\frac{1}{2}\)
Vậy giá trị nhỏ nhất của A là 10 khi x = -1/2
a) \(A=4x^2-12x+100=\left(2x\right)^2-12x+3^2+91=\left(2x-3\right)^2+91\)
Ta có: \(\left(2x-3\right)^2\ge0\forall x\inℤ\)
\(\Rightarrow\left(2x-3\right)^2+91\ge91\)
hay A \(\ge91\)
Dấu "=" xảy ra <=> \(\left(2x-3\right)^2=0\)
<=> 2x-3=0
<=> 2x=3
<=> \(x=\frac{3}{2}\)
Vậy Min A=91 đạt được khi \(x=\frac{3}{2}\)
b) \(B=-x^2-x+1=-\left(x^2+x-1\right)=-\left(x^2+x+\frac{1}{4}-\frac{5}{4}\right)=-\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)
Ta có: \(-\left(x+\frac{1}{2}\right)^2\le0\forall x\)
\(\Rightarrow-\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\le\frac{5}{4}\) hay B\(\le\frac{5}{4}\)
Dấu "=" \(\Leftrightarrow-\left(x+\frac{1}{2}\right)^2=0\)
\(\Leftrightarrow x+\frac{1}{2}=0\)
\(\Leftrightarrow x=\frac{-1}{2}\)
Vậy Max B=\(\frac{5}{4}\)đạt được khi \(x=\frac{-1}{2}\)
\(C=2x^2+2xy+y^2-2x+2y+2\)
\(C=x^2+2x\left(y-1\right)+\left(y-1\right)^2+x^2+1\)
\(\Leftrightarrow C=\left(x+y-1\right)^2+x^2+1\)
Ta có:
\(\hept{\begin{cases}\left(x+y-1\right)^2\ge0\forall x;y\inℤ\\x^2\ge0\forall x\inℤ\end{cases}}\)
\(\Leftrightarrow\left(x+y-1\right)^2+x^2+1\ge1\)
hay C\(\ge\)1
Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x+y-1\right)^2=0\\x^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+y=1\\x=0\end{cases}\Leftrightarrow}\hept{\begin{cases}y=1\\x=0\end{cases}}}\)
Vậy Min C=1 đạt được khi y=1 và x=0
a) Ta có: \(A=4x^2+4x+11\)
\(\Rightarrow A=4x^2+2x+2x+11\)
\(\Rightarrow A=2x.\left(2x+1\right)+\left(2x+1\right)+10\)
\(\Rightarrow A=\left(2x+1\right).\left(2x+1\right)+10\)
\(\Rightarrow A=\left(2x+1\right)^2+10\)
Ta lại có: \(\left(2x+1\right)^2\ge0\forall x\inℝ\)
\(\Rightarrow A\ge10\)
Dấu "=" xảy ra \(\Leftrightarrow\left(2x+1\right)^2=0\)
\(\Rightarrow2x+1=0\)
\(\Rightarrow2x=-1\)
\(\Rightarrow x=\frac{-1}{2}\)
Vậy \(A_{min}=10\Leftrightarrow x=\frac{-1}{2}\)
ta có A=x^2-2x+2015=(x-1)^2+2014
vì (x-1)^2>0 nên A=(x-1)^2+2014>2014
dấu bằng xảy ra<=>(x-1)^2=0<=>x=1
Vậy MinA =2014<=>x=1
còn lại bạn tự chứng minh nha
\(B=4x^2-2x-11=\left(2x\right)^2-2\times2x\times\frac{1}{2}+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2-11\)
\(B=\left(2x-\frac{1}{2}\right)-\frac{1}{4}-11=\left(2x-\frac{1}{2}\right)-\frac{43}{4}\)
Vay GTNN cua Bla 43/4
khi 2x-1/2=0
2x=1/2
x=1/4