Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) |x+3/4| >/ 0
|x+3/4| + 1/2 >/ 1/2
MinA= 1/2 <=> x+3/4 =0 hay x= -3/4
b) 2|2x-4/3| >/ 0
2|2x-4/3| -1 >/ -1
MinB = -1 <=> 2|2x-4/3| = 0 hay x=2/3
Bài tiếp théo:
a) -2|x+4| \< 0
-2|x+4| +1 \< 1
MaxA=1 <=> -2|x+4| = 0 hay = -4
b) -3|x-5| \< 0
-3|x-5| + 11/4 \< 11/4
MaxB=11/4 <=> -3|x-5| = 0 hay x=-5
A= |x+1|+5
Vì |x+1| > hoặc =0 => |x+1|+5 > hoặc =5
Dấu = xảy ra <=> x+1=0=> x=-1
Vậy A đạt GTNN =5 <=> x=-1
Còn câu b bạn tự làm
ủng hộ nha
|x+1|> hoặc = 0 với mọi x
suy ra |x+1|+5 > hoặc = 5 với mọi x
suy ra Amin=5 khi |x+1|=0
suy ra x+1=0
suy ra x = -1
vậy gtnn của A là 5 khi x=-1
bn nên sử dụng dấu suy ra và dấu lớn hơn hoặc vì mình ko biết đánh dấu . câu b bn làm tương tự vì x^2 cũng lớn hơn hoặc bằng 0
a) $A=x(x+1)+x+2\\=x^2+x+x+2\\=x^2+2x+1+1\\=(x+1)^2+1$
Ta có: $(x+1)^2\ge 0\forall x$
$\Leftrightarrow A\ge 1$
$\Rightarrow \min A=1$
$\Rightarrow$ Dấu "=" xảy ra khi $x+1=0$ hay $x=-1$
Vậy $A$ đạt GTNN là $1$ tại $x=-1$
b/ Ta có: $|x-1|\ge 0\forall x$
$\Leftrightarrw B\ge 3$
$\Rightarrow \min B=3$
$\Rightarrow$ Dấu "=" xảy ra khi $x-1=0$ hay $x=1$
Vậy $B$ đạt GTNN là $3$ tại $x=1$