Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\sqrt{x}+3\)
Vì \(\sqrt{x}\ge0\)
=> \(\sqrt{x}+3\ge3\)
Vậy GTNN của A là 3 khi x=0
\(B=\sqrt{x-1}-5\)
Vì:\(\sqrt{x-1}\ge0\)
\(\Rightarrow\sqrt{x-1}-5\ge-5\)
Vậy GTNN của B là -5 khi x=1
a)Ta thấy: \(\sqrt{x}\ge0\)
\(\Rightarrow\sqrt{x}+3\ge0+3=3\)
\(\Rightarrow A\ge3\)
Dấu = khi \(x=0\)
Vậy MinA=3 khi x=0
b)Ta thấy: \(\sqrt{x-1}\ge0\)
\(\Rightarrow\sqrt{x-1}-5\ge0-5=-5\)
\(\Rightarrow B\ge-5\)
Dấu = khi x=1
Vậy MinA=-5 khi x=1
Để A là số nguyên thì 9 \(⋮\)\(\sqrt{x}-5\)
\(\Rightarrow\sqrt{x}-5\inƯ\left(9\right)=\left\{1;-1;3;-3;9;-9\right\}\)
Lập bảng ta có :
\(\sqrt{x}-5\) | 1 | -1 | 3 | -3 | 9 | -9 |
x | 36 | 16 | 64 | 4 | 196 | không tồn tại |
Vậy x = ....
Biến đổi : \(B=\frac{\sqrt{x}+1}{\sqrt{x}-3}=\frac{\sqrt{x}-3+4}{\sqrt{x}-3}=1+\frac{4}{\sqrt{x}-3}\)
Do B là số nguyên nên \(\frac{4}{\sqrt{x}-3}\)phải là số nguyên ( 1 )
\(\Rightarrow4⋮\sqrt{x}-3\)\(\Rightarrow\sqrt{x}-3\inƯ\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)
Lập bảng ta có :
\(\sqrt{x}-3\) | 1 | -1 | 2 | -2 | 4 | -4 |
x | 16 | 4 | 25 | 1 | 49 | không tồn tại |
Vậy x = ....
mik cũng đang tìm bài này hình đại diên Suga phải
ko
P/s : Làm bừa
\(A=\sqrt{x+3}\)
\(\Leftrightarrow A^2=x+3\ge3\)
\(\Leftrightarrow A\ge\sqrt{3}\)
Min \(A=\sqrt{3}\Leftrightarrow x=0\)
Thời gian có hạn copy cái này hộ mình vào google xem nha: :
Link : https://lazi.vn/quiz/d/16491/nhac-edm-la-loai-nhac-the-loai-gi
Vào xem xong các bạn nhận được 1 thẻ cào mệnh giá 100k nhận thưởng bằng cách nhắn tin vs mình và 1 phần thưởng bí mật là chiếc áo đá bóng,....
Có 500 giải nhanh nha đã có 200 người nhận rồi. Mình là phụ trách
OK<3
1a/ Để B có nghĩa thì x+1≥0 => x≥-1
b/ B>2
=> \(\sqrt{x+1}>2\)
\(\Rightarrow x+1>4\Rightarrow x>3\)
2a/ Để A có nghĩa thì 2003-x≥0 => x≤2003
b/ Ta có \(\sqrt{2003-x}\ge0\forall x\)
=>A≥2004
MinA=2004 khi x=2003
Chúc bạn học tốt!
a ) Vì \(\left(x+5\right)^2\ge0\) \(\forall\) \(x\)
\(\Rightarrow A=\left(x+5\right)^2+3\ge3\)
Dấu "=" xảy ra <=> \(\left(x+5\right)^2=0\Rightarrow x=-5\)
Vậy gtnn của A là 3 tại x = - 5
b ) Vì \(\sqrt{x}\ge0\Rightarrow x\ge0\)
\(\Rightarrow x+\sqrt{x}\ge0\)
\(\Rightarrow B=x+\sqrt{x}-5\ge-5\)
Dấu "=" xảy ra <=> x = 0
Vậy gtnn của B là - 5 tại x = 0
c ) Vì \(x^4\ge0\) \(\forall\) \(x\)
\(\Rightarrow x^4+4\ge4\)
\(\Rightarrow C=\left(x^4+4\right)^4\ge4^4=256\)
Dấu "=" xảy ra <=> x = 0
Vậy gtnn của C là 256 tại x = 0
\(A=\sqrt{x}-3\ge-3\)với \(\forall x\)
\(A_{min}=-3\Leftrightarrow\sqrt{x}=0\)
\(\Rightarrow x=0\)
\(B=\sqrt{x}-1+2=\sqrt{x}+1\ge1\)với \(\forall x\)
\(\Rightarrow B_{min}=1\Leftrightarrow\sqrt{x}=0\)
\(\Rightarrow x=0\)