Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, Ta có: 3-x2+2x=-(x2-2x+1)+4=-(x-1)2+4
vì (x-1)2 luôn lớn hơn hoặc bằng không với mọi x-->-(x-1)2 nhỏ hơn hoặc bằng 0 với mọi x
vậy giá trị lớn nhất của biểu thức 3-x2+2x là 4
các bài giá trị nhỏ nhất còn lại làm tương tự bạn nhé
chỉ cần đưa về nhân tử chung hoặc hằng đẳng thức là được
\(\text{a)}\left(2x-1\right)^2+x+2\)
\(=4x^2-4x+1+x+2\)
\(=4x^2-3x+3\)
\(=\left(4x^2-3x+\frac{9}{16}\right)+\frac{39}{16}\)
\(=\left(2x+\frac{3}{4}\right)^2+\frac{39}{16}\)
\(\text{Vì}\left(2x-\frac{3}{4}\right)^2\ge0\)
\(\text{nên }\left(2x-\frac{3}{4}\right)^2+\frac{39}{16}\ge\frac{39}{16}\)
Vậy \(GTNN=\frac{39}{16}\),dấu bằng xảy ra khi \(x=\frac{3}{8}\)
\(\text{b)}4-x^2+2x\)
\(=\left(-x^2+2x-1\right)+5\)
\(=-\left(x^2-2x+1\right)+5\)
\(=-\left(x-1\right)^2+5\)
\(\text{Vì }-\left(x-1\right)^2\le0\)
\(\text{nên }-\left(x-1\right)^2+5\le5\)
Vậy \(GTLN=5\), dấu bằng xảy ra khi \(x=1\)
\(\text{c)}4x-x^2\)
\(=\left(-x^2+4x-4\right)+4\)
\(=-\left(x^2-4x+4\right)-4\)
\(=-\left(x-4\right)^2-4\)
\(\text{Vì }-\left(x-4\right)^2\le0\)
\(\text{nên }-\left(x-4\right)^2-4\le-4\)
Vậy \(GTLN=-4\), dấu bằng xảy ra khi \(x=4\)
\(a,\left(2x-1\right)^2+\left(x+2\right)=4x^2-4x+1+x+2\)
\(=4x^2-3x+3\)
\(=4x^2-2.2.\frac{3}{4}x+\left(\frac{3}{4}\right)^2-\left(\frac{3}{4}\right)^2+3\)
\(=\left(2x-\frac{3}{4}\right)^2+\frac{39}{16}\ge\frac{39}{16}\)
Dấu bằng xảy ra khi \(2x-\frac{3}{4}=0\Rightarrow x=\frac{3}{8}\)
Vậy \(x=\frac{3}{8}\)thì biểu thức đạt giá trị nhỏ nhất là \(\frac{39}{16}\)
\(b,4-x^2+2x=-\left(x^2-2x-4\right)\)
\(=-\left(\left(x-2\right)^2-8\right)\)
\(\left(x-2\right)^2-8\ge-8\)
\(-\left(\left(x-2\right)^2-8\right)\le8\)
Dấu bằng xảy ra khi \(x-2=0\Rightarrow x=2\)
Vậy \(x=2\)thì biểu thức đạt giá trị lớn nhất là 8
\(c,4x-x^2=-\left(x^2-4x\right)\)
\(=-\left(\left(x-2\right)^2-4\right)\)
\(\left(x-2\right)^2-4\ge-4\)
\(\Rightarrow-\left(\left(x-2\right)^2-4\right)\le4\)
Dấu bằng xảy ra khi \(x-2=0\Rightarrow x=2\)
Vậy giá trị lớn nhất của biểu thức là 4 khi x = 2
a) \(A=4x^2-12x+100=\left(2x\right)^2-12x+3^2+91=\left(2x-3\right)^2+91\)
Ta có: \(\left(2x-3\right)^2\ge0\forall x\inℤ\)
\(\Rightarrow\left(2x-3\right)^2+91\ge91\)
hay A \(\ge91\)
Dấu "=" xảy ra <=> \(\left(2x-3\right)^2=0\)
<=> 2x-3=0
<=> 2x=3
<=> \(x=\frac{3}{2}\)
Vậy Min A=91 đạt được khi \(x=\frac{3}{2}\)
b) \(B=-x^2-x+1=-\left(x^2+x-1\right)=-\left(x^2+x+\frac{1}{4}-\frac{5}{4}\right)=-\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)
Ta có: \(-\left(x+\frac{1}{2}\right)^2\le0\forall x\)
\(\Rightarrow-\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\le\frac{5}{4}\) hay B\(\le\frac{5}{4}\)
Dấu "=" \(\Leftrightarrow-\left(x+\frac{1}{2}\right)^2=0\)
\(\Leftrightarrow x+\frac{1}{2}=0\)
\(\Leftrightarrow x=\frac{-1}{2}\)
Vậy Max B=\(\frac{5}{4}\)đạt được khi \(x=\frac{-1}{2}\)
\(C=2x^2+2xy+y^2-2x+2y+2\)
\(C=x^2+2x\left(y-1\right)+\left(y-1\right)^2+x^2+1\)
\(\Leftrightarrow C=\left(x+y-1\right)^2+x^2+1\)
Ta có:
\(\hept{\begin{cases}\left(x+y-1\right)^2\ge0\forall x;y\inℤ\\x^2\ge0\forall x\inℤ\end{cases}}\)
\(\Leftrightarrow\left(x+y-1\right)^2+x^2+1\ge1\)
hay C\(\ge\)1
Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x+y-1\right)^2=0\\x^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+y=1\\x=0\end{cases}\Leftrightarrow}\hept{\begin{cases}y=1\\x=0\end{cases}}}\)
Vậy Min C=1 đạt được khi y=1 và x=0
\(A=2x^2+5x-3=2\left(x^2+\frac{5}{2}x-\frac{2}{3}\right)\)
\(=2\left(x^2+2.\frac{5}{4}x+\frac{25}{16}-\frac{107}{48}\right)\)
\(=2\left[\left(x+\frac{5}{4}\right)^2-\frac{107}{48}\right]\)
\(=2\left[\left(x+\frac{5}{4}\right)^2\right]-\frac{107}{24}\ge\frac{-107}{24}\)
Vậy \(A_{min}=\frac{-107}{24}\Leftrightarrow x+\frac{5}{4}=0\Leftrightarrow x=-\frac{5}{4}\)