K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2023

10?

5 tháng 7 2023

\(C=x^2+y^2-x+6x+10\\ =x^2+5x+y^2+10\\ =x^2+2\cdot\dfrac{5}{2}x+\dfrac{25}{4}+y^2+\dfrac{15}{4}\\ =\left(x+\dfrac{5}{2}\right)^2+y^2+\dfrac{15}{4}\)

Mà \(\left(x+\dfrac{5}{2}\right)^2+y^2\ge0\forall x,y\)

\(\Rightarrow\left(x+\dfrac{5}{2}\right)^2+y^2+\dfrac{15}{4}\ge\dfrac{15}{4}\forall x,y\)

Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x+\dfrac{5}{2}=0\Leftrightarrow x=-\dfrac{5}{2}\\y=0\end{matrix}\right.\)

Vậy GTNN của C là \(\dfrac{15}{4}\) khi x = \(-\dfrac{5}{2}\) và y = 0

9 tháng 3 2020

a) \(A=4x^2-12x+100=\left(2x\right)^2-12x+3^2+91=\left(2x-3\right)^2+91\)

Ta có: \(\left(2x-3\right)^2\ge0\forall x\inℤ\)

\(\Rightarrow\left(2x-3\right)^2+91\ge91\)

hay A \(\ge91\)

Dấu "=" xảy ra <=> \(\left(2x-3\right)^2=0\)

<=> 2x-3=0

<=> 2x=3

<=> \(x=\frac{3}{2}\)

Vậy Min A=91 đạt được khi \(x=\frac{3}{2}\)

b) \(B=-x^2-x+1=-\left(x^2+x-1\right)=-\left(x^2+x+\frac{1}{4}-\frac{5}{4}\right)=-\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)

Ta có: \(-\left(x+\frac{1}{2}\right)^2\le0\forall x\)

\(\Rightarrow-\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\le\frac{5}{4}\) hay B\(\le\frac{5}{4}\)

Dấu "=" \(\Leftrightarrow-\left(x+\frac{1}{2}\right)^2=0\)

\(\Leftrightarrow x+\frac{1}{2}=0\)

\(\Leftrightarrow x=\frac{-1}{2}\)

Vậy Max B=\(\frac{5}{4}\)đạt được khi \(x=\frac{-1}{2}\)

9 tháng 3 2020

\(C=2x^2+2xy+y^2-2x+2y+2\)

\(C=x^2+2x\left(y-1\right)+\left(y-1\right)^2+x^2+1\)

\(\Leftrightarrow C=\left(x+y-1\right)^2+x^2+1\)

Ta có: 

\(\hept{\begin{cases}\left(x+y-1\right)^2\ge0\forall x;y\inℤ\\x^2\ge0\forall x\inℤ\end{cases}}\)

\(\Leftrightarrow\left(x+y-1\right)^2+x^2+1\ge1\)

hay C\(\ge\)1

Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x+y-1\right)^2=0\\x^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+y=1\\x=0\end{cases}\Leftrightarrow}\hept{\begin{cases}y=1\\x=0\end{cases}}}\)

Vậy Min C=1 đạt được khi y=1 và x=0

23 tháng 6 2016

GTNN của biểu thức A là 5

14 tháng 7 2019

Ta có: J = x2 + y2 - 6x - 2y + 17 = (x2 - 6x + 9)+ (y2 - 2y + 1) + 7 = (x - 3)2  + (y - 1)2 + 7

Ta luôn có: (x - 3)2 \(\ge\)\(\forall\)x

          (y - 1)2 \(\ge\) 0 \(\forall\)y

=> (x - 3)2 + (y - 1)2 + 7 \(\ge\)\(\forall\)x;y

Dấu "=" xảy ra khi: \(\hept{\begin{cases}x-3=0\\y-1=0\end{cases}}\) => \(\hept{\begin{cases}x=3\\y=1\end{cases}}\)

Vậy Min của J =  7 tại x = 3 và y = 1

(HD) Ta có: G = (x - 2)2 + (x - 4)2 = x2 - 4x + 4 + x2 - 8x + 16 = 2x2 - 12x + 20 = 2(x2 - 6x + 9) + 2 = 2(x - 3)2 + 2

Phần còn lại lm như trên

10 tháng 6 2017

mk giải lun nha :

b)\(x^2+y^2-x+6y+10=\left(x^2-2.\frac{1}{2}.x+\frac{1}{4}\right)+\left(y^2.2-2...\right)\)

nhận xét :\(\frac{x-1^2}{2}>=0\)(do bình phương của 1 số lun k âm)

\(\left(y-3^{ }\right)^2>=0\)(do bình phương của 1 số lun k âm )

\(=>\frac{x-1^2}{2}+\left(y-3\right)^2>=0\)

\(=>\frac{x-1^2}{2}+\left(y-3\right)^2+\frac{3}{4}>=\frac{3}{4}\)

hay B \(>=\frac{3}{4}\)DẤU = XẢY RA <=>X=1/2,Y=3

VẬY B MIN =3/4 <=>X=1/2,Y=3

MK CHỈ LÀM ĐƯỢC CÂU B THUI 

10 tháng 7 2015

a)Đặt  \(A=2x^2-6x=2\left(x^2-3x\right)=2\left(x^2-2.\frac{3}{2}x+\frac{9}{4}-\frac{9}{4}\right)\)

\(=2\left(x-\frac{3}{2}\right)^2-\frac{9}{2}\ge-\frac{9}{2}\) (vì   \(\left(x-\frac{3}{2}\right)^2\ge0\)  với mọi x)

Dấu "=" xảy ra \(\Leftrightarrow x=\frac{3}{2}\)

Vậy Min A= \(-\frac{9}{2}\) tại x= \(\frac{3}{2}\)

b) Đặt  \(B=x^2+y^2-x+6y+10=\left(x^2-2.\frac{1}{2}x+\frac{1}{4}\right)+\left(y^2+2.3y+9\right)+\frac{3}{4}\)

\(=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\ge\frac{3}{4}\)( vì \(\left(x-\frac{1}{2}\right)^2\ge0;\left(y+3\right)^2\ge0\) với mọi x, y)

Dấu "=" xảy ra \(\Leftrightarrow x=\frac{1}{2};y=-3\)

Vậy Min B= \(\frac{3}{4}\) tại x= \(\frac{1}{2}\); y= -3.

 

9 tháng 1 2017

ta có 

P = 2x^2 - 6x 

= 2( x^2 - 3x + 9/4) - 9/4

= 2( x-3/2)^2 - 9/4 

nhận xét 2(x-3/2)^2 >=0 

=> 2(x-3/2)^2 - 9/4 >=-9/4

dấu = xảy ra khi và chỉ khi 

x- 3/2 = 0 

=> x= 3/2

9 tháng 1 2017

4x - x^2 + 3 

= -x^2 + 4x - 4 +7

= -(x^2 - 4x + 4) + 7 

= -(x-2)^2 + 7 

nhận xét -(x-2)^2 <=0 

=> -(x-2)^2 + 7 <=7 

đấu = xảy ra khi và chỉ khi 

x-2 = 0 

=> x= 2

10 tháng 8 2016

a) P= x^2 -2x +5 = x^2 -2x +1 +4 = (x-1)^2 +4 
Ta co: (x-1)^2 >=0 <=> (x-1)^2 +4 >=4 
Vay gia tri nho nhat P=4 khi x=1 
b) Q= 2x^2 -6x = 2(x^2 -3x) = 2(x^2 - 2.x.3/2 + 9/4 -9/4)= 2[(x-3/2)^2 -9/4] 
Ta co: (x-3/2)^2 >=0 <=>(x-3/2)^2 -9/4 >= -9/4 <=> 2[(x-3/2)^2 -9/4] >= -9/2 
Vay gia tri nho nhat Q= -9/2 khi x= 3/2 
c) M= x^2 +y^2 -x +6y +10 = (x^2 -2.x.1/2 + 1/4) +(y^2 +2.y.3+9)+3/4 
= ( x-1/2)^2 + (y+3)^2 +3/4 
M>= 3/4 
Vay GTNN cua M = 3/4 khi x=1/2 va y=-3 

10 tháng 8 2016

P=x2-2x+1+4

=(x-1)2+4

vì (x-1)2 >= 0 với mọi x nên (x-1)2+4 lớn hơn hoặc = 4 

dấu = xảy ra khi (x-1)2=0 <=>x=1

vậy gtnn của P=4 khi x=1

17 tháng 7 2016

a,A=x^2+2.x.5/2+25/4+3/4

    =(x+5/2)2+3/4

nx:(x+5/2)^2 luôn> hoặc = 0 nên (x+5/2)^2+3/4 >hoặc =3/4

vậy GTNN của A là 3/4

b,B=6x-x2-5

    = - (x2-6x+5)

    = - (x2-2.x.3+9-4)

    =-[(x-3)2-4]

    =-(x-3)^2+4

nx; -(x-3)^2 luôn nhỏ  hơn hoặc bằng 0 nên -(x-3)^2 +4 luôn < hoặc= 4

Vậy GTLN của B là 4