K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2017

a) \(\left|3,4-x\right|\ge0\forall x\in R\)

\(\Rightarrow1,7+\left|3,4-x\right|\ge1,7\forall x\in R\)

\(\Rightarrow A\ge1,7\forall x\in R\)

Đẳng thức xảy ra \(\Leftrightarrow\left|3,4-x\right|=0\Leftrightarrow3,4-x=0\Leftrightarrow x=3,4\)

Vậy GTNN của A = 1,7 \(\Leftrightarrow x=1,7\)

b) \(\left(4x-3\right)^2\ge0\forall x\in R\)

\(\Rightarrow B\ge0\forall x\in R\)

Đẳng thức xảy ra \(\Leftrightarrow\left(4x-3\right)^2=0\Leftrightarrow4x-3=0\Leftrightarrow4x=3\Leftrightarrow x=0,75\)

Vậy GTNN của B = 0 \(\Leftrightarrow x=0,75\)

26 tháng 7 2017

a/ Gọi Amin là GTNN của A.

Vì \(\left|3,4-x\right|\ge0\)=> \(1,7+\left|3,4-x\right|\ge1,7\). Dấu "=" xảy ra khi và chỉ khi \(\left|3,4-x\right|=0\).

=> \(3,4-x=0\)=> \(x=3,4\).

Vậy Amin = 1,7 khi x = 3,4.

19 tháng 3 2020

1, 

a. A = 1,7 + |3,4 - x| 

|3,4 - x| > 0

=> A > 1,7

dấu "=" xảy ra khi |3,4 - x| = 0

=> 3,4 - x = 0

=> x = 3,4

b, B = |x + 2.8| - 3,5

|x + 2,8| > 0

=> B > -3,5

dấu "=" xảy ra khi : |x + 2,8| = 0

=> x + 2,8 = 0

=> x = -2,8

vậy min = -3,5 khi x  = -2,8

2 tháng 12 2018

Với mọi x ta có :

\(\left|3,4-x\right|\ge0\)

\(\Leftrightarrow1,7+\left|3,4-x\right|\ge1,7\)

\(\Leftrightarrow A\ge1,7\)

Dấu "=" xảy ra khi :

\(\Leftrightarrow\left|3,4-x\right|=0\)

\(\Leftrightarrow x=3,4\)

Vậy \(A_{Min}=1,7\Leftrightarrow x=3,4\)

2 tháng 12 2018

A = 1,7 + | 3,4 − x |

\(\Rightarrow\) \(\left|3,4-x\right|\ge0\)

A nhỏ nhất khi dấu "=" xảy ra:

1,7 + \(\left|3,4-x\right|\) = 1,7

\(\Rightarrow\) \(\left|3,4-x\right|=0\)

\(\Rightarrow\) x = 3,4

Vậy minA = 1,7

31 tháng 3 2017

2.

a/\(A=5-I2x-1I\)

Ta thấy: \(I2x-1I\ge0,\forall x\)

nên\(5-I2x-1I\le5\)

\(A=5\)

\(\Leftrightarrow5-I2x-1I=5\)

\(\Leftrightarrow I2x-1I=0\)

\(\Leftrightarrow2x=1\)

\(\Leftrightarrow x=\frac{1}{2}\)

Vậy GTLN của \(A=5\Leftrightarrow x=\frac{1}{2}\)

b/\(B=\frac{1}{Ix-2I+3}\)

Ta thấy : \(Ix-2I\ge0,\forall x\)

nên \(Ix-2I+3\ge3,\forall x\)

\(\Rightarrow B=\frac{1}{Ix-2I+3}\le\frac{1}{3}\)

\(B=\frac{1}{3}\)

\(\Leftrightarrow B=\frac{1}{Ix-2I+3}=\frac{1}{3}\)

\(\Leftrightarrow Ix-2I+3=3\)

\(\Leftrightarrow Ix-2I=0\)

\(\Leftrightarrow x=2\)

Vậy GTLN của\(A=\frac{1}{3}\Leftrightarrow x=2\)

8 tháng 9 2019

Hai bài này có mấy cái bình phương sẵn rồi nên chỉ sài cái bất đẳng thức \(A^2\ge0\)là được rồi

a/Ta có \(\left(2x+\frac{1}{3}\right)^4\ge0\)

Do đó \(\left(2x+\frac{1}{3}\right)^4-1\ge0-1\)

\(\Leftrightarrow A\ge-1\)

Tới đây vì A lớn hơn hoặc bằng -1 nên giá trị nhỏ nhất của A là -1

Vậy Giá trị nhỏ nhất của A là -1

b/Bạn làm hệt như câu a, với lại nếu bạn suy ra \(A\ge-1\)thì bạn kết luận luôn Giá trị nhỏ nhất của A là -1

17 tháng 4 2020

eeeee

8 tháng 11 2015

a) Vì (x+2)2 >/  0 

=> \(A\le\frac{3}{0+4}=\frac{3}{4}\Rightarrow Amax=\frac{3}{4}\Leftrightarrow x+2=0\Rightarrow x=-2\)

b) Vì \(\left(x+1\right)^2\ge0;\left(y+3\right)^2\ge0\)

\(B\ge0+0+1=1\Rightarrow Bmin=1\Leftrightarrow\int^{x+1=0}_{y+3=0}\Rightarrow\int^{x=-1}_{y=-3}\)

22 tháng 8 2019

A = 1,7 + |3,4 - x|

Ta có: |3,4 - x| \(\ge\)\(\forall\)x

=> 1,7 + |3,4 - x| \(\ge\)1,7 \(\forall\)x

Dấu "=" xảy ra <=> 3,4 - x = 0 <=> x = 3,4

vậy MinA = 1,7 tại x = 3,4

B = |x + 2,8| - 3,5 (xlđ)

Ta có: |x + 2,7| \(\ge\)\(\forall\)x

=> |x + 2,8| - 3,5 \(\ge\)-3,5 \(\forall\)x

Dấu "=" xảy ra <=> x + 2,8 = 0 <=> x = -2,8

Vậy MinB = -3,5 tại x = -2,8

C = |x - 4/7| - 1/2

Ta có: |x - 4/7| \(\ge\)\(\forall\)x

=> |x - 4/7| -1/2 \(\ge\)-1/2 \(\forall\)x

Dấu "=" xảy ra <=> x -4/7 = 0 <=> x = 4/7

vậy Min C = -1/2 tại x = 4/7

10 tháng 6 2017

\(\left|3,4-x\right|\) luôn dương nên để C nhỏ nhất thì \(\left|3,4-x\right|\) nhỏ nhất

\(\Rightarrow\left|3,4-x\right|=0\)

\(\Rightarrow3,4-x=0\)

\(\Rightarrow x=3,4\)

Khi \(x=3,4\) thì giá trị của C là 1,7 + 0 = 1,7

10 tháng 6 2017

Để D nhỏ nhất thì \(\left|x+2,8\right|=3,5\)

Ta có: \(\left|x+2,8\right|=3,5\)

\(\Rightarrow\left\{{}\begin{matrix}x+2,8=3,5\\x+2,8=-3,5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0,7\\x=-6,3\end{matrix}\right.\)

Vậy khi x = 0,7 hoặc x = -6,3 thì D = 3,5 - 3,5 = 0

21 tháng 9 2021

\(a,A=\left|3,4-x\right|+1,7\ge1,7\)

Dấu \("="\Leftrightarrow3,4-x=0\Leftrightarrow x=3,4\)

\(c,C=\left|4x-3\right|+\left|5y+7,5\right|+17,5\ge17,5\)

Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}4x-3=0\\5y+7,5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3}{4}\\y=-\dfrac{3}{2}\end{matrix}\right.\)