Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tìm giá trị nhỏ nhất của biểu thức:
D= x+2y -√2x−y- 5√4y−3+ 13 ( x≥12 ; y≥ 34 )
a/ \(P=12\)
b/ \(Q=\frac{\sqrt{x}}{\sqrt{x}-2}\)
c/ Ta có:
\(\frac{P}{Q}=\frac{\frac{x+3}{\sqrt{x}-2}}{\frac{\sqrt{x}}{\sqrt{x}-2}}=\frac{x+3}{\sqrt{x}}\ge\frac{2\sqrt{3x}}{\sqrt{x}}=2\sqrt{3}\)
Dấu = xảy ra khi x = 3 (thỏa tất cả các điều kiện )
a. Thay x = 3 vào biểu thức P ta được :
\(p=\frac{x+3}{\sqrt{x}-2}=\frac{9+3}{\sqrt{9}-2}=12\)
b, \(Q=\frac{\sqrt{x}-1}{\sqrt{x}+2}+\frac{5\sqrt{x}-2}{x-4}\)
\(=\frac{\sqrt{x}-1}{\sqrt{x}+2}+\frac{5\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)+5\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{x-3\sqrt{x}+2+5\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{x+2\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{\sqrt{x}}{\sqrt{x}-2}\)
c, Ta có :
\(\frac{P}{Q}=\frac{\frac{x+3}{\sqrt{x}-2}}{\frac{\sqrt{x}}{\sqrt{x}-2}}=\frac{x+3}{\sqrt{x}}\ge\frac{2\sqrt{3x}}{\sqrt{x}}=2\sqrt{3}\)
Vậy GTNN \(\frac{P}{Q}=2\sqrt{3}\) khi và chỉ khi \(x=3\)
Lời giải:
a) \(x=\frac{23(5-\sqrt{2})}{5+\sqrt{2}}=\frac{23(5-\sqrt{2})^2}{(5+\sqrt{2})(5-\sqrt{2})}=\frac{23(5-\sqrt{2})^2}{5^2-2}=(5-\sqrt{2})^2\)
\(\Rightarrow x=5-\sqrt{2}\)
Do đó: \(B=\frac{5-\sqrt{2}+2}{5-\sqrt{2}-5}=\frac{7-\sqrt{2}}{-\sqrt{2}}=\frac{\sqrt{2}-7}{\sqrt{2}}\)
b)
\(A=\frac{x+3\sqrt{x}}{x-25}+\frac{1}{\sqrt{x}+5}=\frac{x+3\sqrt{x}}{(\sqrt{x}-5)(\sqrt{x}+5)}+\frac{\sqrt{x}-5}{(\sqrt{x}-5)(\sqrt{x}+5)}\)
\(=\frac{x+4\sqrt{x}-5}{(\sqrt{x}-5)(\sqrt{x}+5)}=\frac{(\sqrt{x}-1)(\sqrt{x}+5)}{(\sqrt{x}-5)(\sqrt{x}+5)}\)
\(=\frac{\sqrt{x}-1}{\sqrt{x}-5}\)
Ta có: \(\frac{A}{B}=\frac{\sqrt{x}-1}{\sqrt{x}-5}:\frac{\sqrt{x}+2}{\sqrt{x}-5}=\frac{\sqrt{x}-1}{\sqrt{x}+2}=\frac{4}{7}\)
\(\Rightarrow 7(\sqrt{x}-1)=4(\sqrt{x}+2)\)
\(\Rightarrow \sqrt{x}=5\Rightarrow x=25\)
c)
\(\frac{A}{B}=\frac{\sqrt{x}-1}{\sqrt{x}+2}=\frac{\sqrt{x}+2-3}{\sqrt{x}+2}=1-\frac{3}{\sqrt{x}+2}\)
Vì \(\sqrt{x}\geq 0\Rightarrow \sqrt{x}+2\geq 2\Rightarrow \frac{3}{\sqrt{x}+2}\leq \frac{3}{2}\)
\(\Rightarrow \frac{A}{B}=1-\frac{3}{\sqrt{x}+2}\geq 1-\frac{3}{2}=\frac{-1}{2}\)
Vậy \(P_{\min}=\frac{-1}{2}\Leftrightarrow x=0\)
Lời giải:
Áp dụng BĐT Bunhiacopxky, với $x\geq \frac{-1}{2}$ ta có:
\((\sqrt{2x^2+5x+2}+2\sqrt{x+3})^2=(\sqrt{(2x+1)(x+2)}+2\sqrt{x+3})^2\)
\(\leq [(2x+1)+2^2][(x+2)+(x+3)]=(2x+5)^2\)
\(\Rightarrow \sqrt{2x^2+5x+2}+2\sqrt{x+3}\leq 2x+5\)
\(\Rightarrow A\leq 5\)
Vậy $A_{\max}=5$. Giá trị này đạt tại $x=1$
*Trả lời:
Ta có: \(2H=2x+4y-2\sqrt{2x-1}-10\sqrt{4y-3}+26=\left(\sqrt{2x-1}-1\right)^2+\left(\sqrt{4y-3}-5\right)^2+4\ge4\Leftrightarrow H\ge2\)
Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}\sqrt{2x-1}-1=0\\\sqrt{4y-3}-5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\x=7\end{matrix}\right.\)(thỏa mãn điều kiện)
Vậy giá trị nhỏ nhất của H là 2 khi\(\left\{{}\begin{matrix}x=1\\y=7\end{matrix}\right.\)